Direct and indirect effects in a logit model

Maarten L. Buis

Department of Social Research Methodology Vrije Universiteit Amsterdam http://home.fsw.vu.nl/m.buis/

Maarten L. Buis Direct and indirect effects in a logit model

・ロット (雪) () () () ()

Outline

The aim

The problem

The solution

example

Maarten L. Buis Direct and indirect effects in a logit model

<ロト <回 > < 注 > < 注 > 、

The Total Effect

Maarten L. Buis Direct and indirect effects in a logit model

ヘロト 人間 とくほとくほとう

The Total Effect

Maarten L. Buis Direct and indirect effects in a logit model

ヘロト 人間 とくほとくほとう

The Indirect Effect

ヘロト 人間 とくほとく ほとう

The Indirect Effect

<ロト <回 > < 注 > < 注 > 、

The Direct Effect

ヘロト 人間 とくほとく ほとう

The Direct Effect

イロン 不同 とくほう イヨン

The aim

The aim is to find the size of the indirect effect relative to the total effect.

・ 回 ト ・ ヨ ト ・ ヨ ト

Outline

The aim

The problem

The solution

example

Maarten L. Buis Direct and indirect effects in a logit model

<ロト <回 > < 注 > < 注 > 、

Estimation

- When using regress:
 - 1. college = class + performance
 - 2. college = class

ヘロン ヘアン ヘビン ヘビン

Estimation

- When using regress:
 - 1. college = class + performance
 - 2. college = class

The direct effect is the effect of class in model 1.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Estimation

- When using regress:
 - 1. college = class + performance
 - 2. college = class
- The direct effect is the effect of class in model 1.
- The total effect is the effect of class in model 2.

(雪) (ヨ) (ヨ)

Estimation

- When using regress:
 - 1. college = class + performance
 - 2. college = class
- The direct effect is the effect of class in model 1.
- The total effect is the effect of class in model 2.
- The indirect effect is the total effect direct effect.

通 とくほ とくほ とう

э.

Estimation

- When using regress:
 - 1. college = class + performance
 - 2. college = class
- The direct effect is the effect of class in model 1.
- The total effect is the effect of class in model 2.
- The indirect effect is the total effect direct effect.
- This won't work when using logit

通 とくほ とくほ とう

Easiest explained when there is no indirect effect.

ヘロト 人間 ト ヘヨト ヘヨト

- Easiest explained when there is no indirect effect.
- The total effect = the direct effect + the indirect effect.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Easiest explained when there is no indirect effect.
- The total effect = the direct effect + the indirect effect.
- So, the total effect should be the same as the direct effect when there is no indirect effect.

通 とう ぼう うきょう

- Easiest explained when there is no indirect effect.
- The total effect = the direct effect + the indirect effect.
- So, the total effect should be the same as the direct effect when there is no indirect effect.
- So, the effect of class in a model that controls for performance (the 'direct effect') should be the same as the effect of class in a model that does not control for performance (the 'total effect').

通 とく ヨ とく ヨ とう

Effect while controlling for performance

< 🗇

Averaging the proportions

Maarten L. Buis Direct and indirect effects in a logit model

★ E → ★ E →

< 🗇 ▶

Effect while not controlling for performance

→ < Ξ →</p>

Outline

The aim

The problem

The solution

example

Maarten L. Buis Direct and indirect effects in a logit model

<ロト <回 > < 注 > < 注 > 、

Indirect effect present

< ∃→

Indirect effect

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▶ ★ 臣 ▶

< E

Direct effect

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▶ ★ 臣 ▶

< E

Direct and indirect effects in logit

< ∃→

The logic can be reversed

< ∃→

Extension

Erikson et al. (2005) propose to compute the average proportions given the observed and counterfactual distribution of performance by assuming that performance is normally distributed, and then integrate over this normal distribution.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Extension

- Erikson et al. (2005) propose to compute the average proportions given the observed and counterfactual distribution of performance by assuming that performance is normally distributed, and then integrate over this normal distribution.
- Alternatively, these averages can be computed by predicting the observed and counterfactual proportions, add them up and divide by the number of respondents in that group.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Extension

- Erikson et al. (2005) propose to compute the average proportions given the observed and counterfactual distribution of performance by assuming that performance is normally distributed, and then integrate over this normal distribution.
- Alternatively, these averages can be computed by predicting the observed and counterfactual proportions, add them up and divide by the number of respondents in that group.
- The latter method has the advantage of making less assumptions about the distribution of performance, as it integrates over the empirical distribution of performance instead of over a normal distribution.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

The aim

The problem

The solution

example

Maarten L. Buis Direct and indirect effects in a logit model

<ロト <回 > < 注 > < 注 > 、

Descriptives

. table ocf57 if !missing(hsrankq, college) , ///

- > contents(mean college mean hsrankq freq) //
- > format(%9.3g) stubwidth(15)

occupation of r father in 1957	mean(college)	mean(hsrankq)	Freq.
lower	.284	48.2	5,218
middle	.38	50.6	868
higher	.619	56.2	2,837

イロト 不得 とくほ とくほとう

∃ <2 <</p>

The ldecomp package

ldecomp depvar [if] [in] [weight] , direct(varname) indirect(varlist) [obspr predpr predodds or rindirect normal range(##) nip(#) interactions nolegend nodecomp nobootstrap bootstrap_options]

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Decomposition of log odds ratios

	Observed	Bootstrap			Normal	-based
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
2/1						
total	.4367997	.0689983	6.33	0.000	.3015655	.5720339
indirect1	.0593679	.0274903	2.16	0.031	.0054878	.1132479
direct1	.3774319	.0729045	5.18	0.000	.2345416	.5203221
indirect2	.0586611	.0277894	2.11	0.035	.0041949	.1131272
direct2	.3781386	.0731829	5.17	0.000	.2347028	.5215744
3/1						
total	1.410718	.0486595	28.99	0.000	1.315347	1.506088
indirect1	.2058881	.0176897	11.64	0.000	.1712169	.2405594
direct1	1.204829	.0471822	25.54	0.000	1.112354	1.297305
indirect2	.2012494	.0186496	10.79	0.000	.1646968	.237802
direct2	1.209468	.0472203	25.61	0.000	1.116918	1.302018
3/2						
total	.9739179	.0775048	12.57	0.000	.8220112	1.125825
indirect1	.1461109	.0303069	4.82	0.000	.0867104	.2055115
direct1	.8278069	.0730737	11.33	0.000	.684585	.9710288
indirect2	.1432144	.0317941	4.50	0.000	.080899	.2055297
direct2	.8307035	.073588	11.29	0.000	.6864737	.9749333

8923

50

ヘロン 人間 とくほ とくほ とう

E DQC

Relative effects

2/1r	method1	.1359155	.0684536	1.99	0.047	.0017489	.2700821
	method2	.1342975	.0691401	1.94	0.052	0012147	.2698096
	average	.1351065	.0687727	1.96	0.049	.0003144	.2698986
3/1r	method1	.1459457	.0121411	12.02	0.000	.1221496	.1697418
	method2	.1426575	.0127593	11.18	0.000	.1176498	.1676652
	average	.1443016	.0123863	11.65	0.000	.1200249	.1685782
3/2r	method1	.1500239	.0290461	5.17	0.000	.0930946	.2069532
	method2	.1470497	.0307503	4.78	0.000	.0867803	.2073192
	average	.1485368	.0298296	4.98	0.000	.0900718	.2070018

Maarten L. Buis Direct and indirect effects in a logit model

ヘロト 人間 とくほとくほとう

Decomposition of odds ratios

. ldecomp college , direct(ocf57) indirect(hsrankq) or nolegend (running_ldecomp on estimation sample) Bootstrap replications (50) ______ 1 ___ 2 ____ 3 ____ 4 ____ 5 _____ 5 Bootstrap results ______ 50 Bootstrap results ______ Number of obs = 8923 Replications = 50

	Observed	Bootstrap			Normal	Normal-based	
	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]	
2/1							
total	1.547746	.1206692	5.60	0.000	1.328423	1.80328	
indirect1	1.061166	.0267866	2.35	0.019	1.009942	1.114987	
direct1	1.458534	.1116674	4.93	0.000	1.2553	1.694672	
indirect2	1.060416	.0264864	2.35	0.019	1.009754	1.11362	
direct2	1.459565	.1118132	4.94	0.000	1.256074	1.696023	
3/1							
total	4.098896	.1715291	33.71	0.000	3.776123	4.449258	
indirect1	1.228616	.0194388	13.01	0.000	1.191101	1.267312	
direct1	3.33619	.1467056	27.40	0.000	3.060695	3.636483	
indirect2	1.22293	.0201835	12.19	0.000	1.184004	1.263136	
direct2	3.351702	.1467947	27.62	0.000	3.075992	3.652124	
3/2							
total	2.6483	.2089437	12.34	0.000	2.26887	3.091182	
indirect1	1.157325	.031425	5.38	0.000	1.097343	1.220585	
direct1	2.288295	.1853601	10.22	0.000	1.952368	2.682022	
indirect2	1.153977	.0309939	5.33	0.000	1.094802	1.216351	
direct2	2.294933	.1868413	10.20	0.000	1.956454	2.69197	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Does it matter?

Table: Comparing different estimates of the size of indirect effect relative to the size of the total effect

	generalization	(Erikson et al. 2005)	naive
middle v. l	ow		
method1	.1359	.1107	
method2	.1343	.1088	
average	.1351	.1098	.0087
high v. low	I		
method1	.1459	.1107	
method2	.1427	.0990	
average	.1443	.1048	.0142
high v. mic	ddle		
method1	.1500	.1075	
method2	.1470	.0968	
average	.1485	.1021	.0167
		< □ > < 5	

Maarten L. Buis Direct and indirect effects in a logit model

∃ <2 <</p>

Discussion

This is "an area of active research"

Maarten L. Buis Direct and indirect effects in a logit model

イロト 不得 とくほと くほとう

Discussion

There are unanswered questions:

Maarten L. Buis Direct and indirect effects in a logit model

イロト 不得 とくほ とくほとう

Discussion

There are unanswered questions:

The need to take the average indirect effect is less than elegant.

ヘロト 人間 ト ヘヨト ヘヨト

Discussion

There are unanswered questions:

- The need to take the average indirect effect is less than elegant.
- How does it relate to the alternative method proposed by Fairlie (2005) and implemented by Ben Jann as the fairlie package?

・ 同 ト ・ ヨ ト ・ ヨ ト …

References

Buis, M. L.

Direct and indirect effects in a logit model.

http://home.fsw.vu.nl/m.buis/wp/ldecomp.html

Erikson, R., J. H. Goldthorpe, M. Jackson, M. Yaish, and D. R. Cox. On class differentials in educational attainment.

Proceedings of the National Academy of Science, 102:9730–9733, 2005.

Fairlie, R. W.

An extension of the Blinder-Oaxaca decomposition technique to logit and probit models.

Journal of Economic and Social Measurement, 30:305–316, 2005.

ヘロン 人間 とくほ とくほ とう

э.