Assessing the reasonableness of an imputation model

Maarten L. Buis

Department of Social Research Methodology
Vrije Universiteit Amsterdam
http://home.fsw.vu.nl/m.buis/
Outline

Missing Data

Multiple Imputation

Weighting
 theory
 weightmis

Application
Outline

Missing Data

Multiple Imputation

Weighting

theory

weightmis

Application

Assessing the reasonableness of an imputation model
Missing data

- two problems:
 1. Loss of information
 2. bias
Missing data

- two problems:
 1. Loss of information
 2. bias

- Solution: Multiple Imputation

- Model diagnostics:
 - Plot distribution of observed and imputed values (Royston 2005a, Abayomi, Gelman, Levy 2006)
 - Check whether imputation algorithm has converged (Royston 2005b)
 - Compare results with alternative method: weighting

Maarten L. Buis

Assessing the reasonableness of an imputation model
Missing data

- two problems:
 1. Loss of information
 2. Bias

- Solution: Multiple Imputation

- model diagnostics:
 - Plot distribution of observed and imputed values (Royston 2005a, Abayomi, Gelman, Levy 2006)
Missing data

- two problems:
 1. Loss of information
 2. bias

- Solution: Multiple Imputation

- model diagnostics:
 - Plot distribution of observed and imputed values (Royston 2005a, Abayomi, Gelman, Levy 2006)
 - Check whether imputation algorithm has converged (Royston 2005b)
Missing data

- two problems:
 1. Loss of information
 2. bias

- Solution: Multiple Imputation

- model diagnostics:
 - Plot distribution of observed and imputed values (Royston 2005a, Abayomi, Gelman, Levy 2006)
 - Check whether imputation algorithm has converged (Royston 2005b)
 - compare results with alternative method
Missing data

- two problems:
 1. Loss of information
 2. Bias

- Solution: Multiple Imputation

- model diagnostics:
 - Plot distribution of observed and imputed values (Royston 2005a, Abayomi, Gelman, Levy 2006)
 - Check whether imputation algorithm has converged (Royston 2005b)
 - Compare results with alternative method: weighting
Three types missingness

1. Missing Completely At Random (MCAR)
 - Probability of being missing does not depend on any other variable.
 - Complete data is a random subsample of the original sample. So, loss of information, but no bias.

2. Missing At Random (MAR)
 - Probability of being missing depends on other variables but not on the missing value itself.
 - Both potential bias and loss of information.

3. Not Missing At Random (NMAR)
 - Probability of being missing depends on the missing value itself.
 - Both potential bias and loss of information.
Three types missingness

1. Missing Completely At Random (MCAR)
 - Probability of being missing does not depend on any other variable.
 - Complete data is a random subsample of the original sample. So, loss of information, but no bias.

2. Missing At Random (MAR)
 - Probability of being missing depends on other variables but not on the missing value itself.
 - Both potential bias and loss of information.
Three types missingness

1. **Missing Completely At Random (MCAR)**
 - Probability of being missing does not depend on any other variable.
 - Complete data is a random subsample of the original sample. So, loss of information, but no bias.

2. **Missing At Random (MAR)**
 - Probability of being missing depends on other variables but not on the missing value itself.
 - Both potential bias and loss of information.

3. **Not Missing At Random (NMAR)**
 - Probability of being missing depends on the missing value itself.
 - Both potential bias and loss of information.
Outline

Missing Data

Multiple Imputation

Weighting
 theory
 weightmis

Application

Assessing the reasonableness of an imputation model
Multiple Imputation

▶ Estimate for each missing value a distribution of plausible values.
Multiple Imputation

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple ‘complete’ datasets.
Multiple Imputation

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple ‘complete’ datasets.
- Estimate the model of interest on each ‘complete’ dataset.
Multiple Imputation

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple ‘complete’ datasets.
- Estimate the model of interest on each ‘complete’ dataset.
- Point estimate is the average of the point estimates over the different ‘complete’ datasets.
Multiple Imputation

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple ‘complete’ datasets.
- Estimate the model of interest on each ‘complete’ dataset.
- Point estimate is the average of the point estimates over the different ‘complete’ datasets.
- Variances of the point estimates are the averages of the variances in the different ‘complete’ datasets, plus a correction for the fact that the imputed cases weren’t real observations but only best guesses.
Multiple Imputation

- Estimate for each missing value a distribution of plausible values.
- Draw multiple values from this distribution (typically 5), thus creating multiple ‘complete’ datasets.
- Estimate the model of interest on each ‘complete’ dataset.
- Point estimate is the average of the point estimates over the different ‘complete’ datasets.
- Variances of the point estimates are the averages of the variances in the different ‘complete’ datasets, plus a correction for the fact that the imputed cases weren’t real observations but only best guesses.
- The correction is based on the between dataset variance of the point estimates.
Multiple Imputation in Stata

- Within Stata the distribution of plausible values can be estimated with `ice` and `hotdeck`.
- Within Stata the estimates from the ‘complete’ datasets can be combined with `mim`.
Outline

Missing Data

Multiple Imputation

Weighting
 theory
 weightmis

Application

Assessing the reasonableness of an imputation model
Missing values for one x.

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$
Missing values for one x.

Bayes’ Rule

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$f(A|B) = \frac{f(A, B)}{f(B)}$$
Missing values for one \(x \).

Bayes’ Rule

\[
f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} \\
f(A|B) = \frac{f(A, B)}{f(B)}
\]
Missing values for one x.

Bayes’ Rule

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$f(A|B) = \frac{f(A, B)}{f(B)}$$
Missing values for one x.

Bayes’ Rule

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)}$$

$$f(A|B) = \frac{f(A, B)}{f(B)}$$
Missing values for one x.

\[
f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} = \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}
\]
Missing values for one x.

Bayes’ Rule again

$$
f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} = \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)} = \frac{f(C|A, B)f(A|B)f(B)}{f(A, B, C)}
$$
Missing values for one x.

Bayes’ Rule again

$$f(y | x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} = \frac{\Pr(R_x | y, x)f(y | x)f(x)}{\Pr(R_x | x)f(x)}$$

$$f(A, B, C) = f(C | A, B)f(A | B)f(B)$$
Missing values for one \(x \).

Bayes’ Rule again

\[
f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} = \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}
\]

\[
f(A, B, C) = f(C|A, B)f(A|B)f(B)
\]
Missing values for one x.

Bayes’ Rule again

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} = \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)}$$

$$f(A, B, C) = f(C|A, B)f(A|B)f(B)$$
Missing values for one x.

\[
f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} = \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)} = \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)} f(y|x)
\]
Missing values for one x.

\[
f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} = \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)} = \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)} f(y|x)
\]
Missing values for one x.

\[
f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} = \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)} = \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)} f(y|x)
\]
Missing values for one x.

MAR assumption

$$f(y|x, R_x) = \frac{f(y, x, R_x)}{f(x, R_x)} = \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)} = \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)}f(y|x) = \frac{\Pr(R_x|y)}{\Pr(R_x)}f(y|x)$$
Missing values for one x.

\[
\begin{align*}
f(y|x, R_x) &= \frac{f(y, x, R_x)}{f(x, R_x)} \\
&= \frac{\Pr(R_x|y, x)f(y|x)f(x)}{\Pr(R_x|x)f(x)} \\
&= \frac{\Pr(R_x|y, x)}{\Pr(R_x|x)} f(y|x) \\
&= \frac{\Pr(R_x|y)}{\Pr(R_x)} f(y|x) \\
f(y|x) &= \frac{\Pr(R_x)}{\Pr(R_x|y)} f(y|x, R_x)
\end{align*}
\]
Estimating the weights \[\frac{\Pr(R_x)}{\Pr(R_x|y)} \]

1. Create a variable indicating whether or not \(x \) is missing:

   ```
   gen Rx = !missing(x)
   ```
Estimating the weights $\frac{\Pr(R_x)}{\Pr(R_x|y)}$

1. Create a variable indicating whether or not x is missing:
 \[\text{gen Rx} = !\text{missing}(x) \]

2. Estimate $\Pr(R_x)$ by:
 \[\text{logit} \ Rx \]
 \[\text{predict} \ PrRx, \text{pr} \]
Estimating the weights $\frac{\Pr(R_x)}{\Pr(R_x|y)}$

1. Create a variable indicating whether or not x is missing:
 \[
 \text{gen Rx = !missing(x)}
 \]

2. Estimate $\Pr(R_x)$ by:
 \[
 \text{logit Rx}
 \]
 \[
 \text{predict PrRx, pr}
 \]

3. Estimate $\Pr(R_x|y)$ by:
 \[
 \text{logit Rx y}
 \]
 \[
 \text{predict PrRxGy, pr}
 \]
Estimating the weights $\frac{Pr(R_x)}{Pr(R_x|y)}$

1. Create a variable indicating whether or not x is missing:
   ```
   gen Rx = !missing(x)
   ```
2. Estimate $Pr(R_x)$ by:
   ```
   logit Rx
   predict PrRx, pr
   ```
3. Estimate $Pr(R_x|y)$ by:
   ```
   logit Rx y
   predict PrRxGy, pr
   ```
4. generate the weight by:
   ```
   gen w = PrRx/PrRxGy
   ```
Missing values for two xs and y.

Bayes’ Rule

\[f(y|x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y, x_1, x_2, R_{x_1}, R_{x_2}, R_y)}{f(x_1, x_2, R_{x_1}, R_{x_2}, R_y)} \]
Missing values for two xs and y.

Bayes’ Rule again

$$f(y|x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y,x_1,x_2,R_{x_1},R_{x_2},R_y)}{f(x_1,x_2,R_{x_1},R_{x_2},R_y)}$$

$$= \frac{\Pr(R_{x_1}|y,x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,x_2,R_y)\Pr(R_y|y,x_1,x_2)f(y|x_1,x_2)f(x_1,x_2)}{\Pr(R_{x_1}|x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,x_2,R_y)\Pr(R_y|x_1,x_2)f(x_1,x_2)}$$
Missing values for two xs and y.

\[
f(y|x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y,x_1,x_2,R_{x_1},R_{x_2},R_y)}{f(x_1,x_2,R_{x_1},R_{x_2},R_y)}
\]

\[
= \frac{\Pr(R_{x_1}|y,x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,x_2,R_y)\Pr(R_y|y,x_1,x_2)f(y|x_1,x_2)f(x_1,x_2)}{\Pr(R_{x_1}|x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,x_2,R_y)\Pr(R_y|x_1,x_2)f(x_1,x_2)}
\]

\[
= \frac{\Pr(R_{x_1}|y,x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,x_2,R_y)\Pr(R_y|y,x_1,x_2)}{\Pr(R_{x_1}|x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,x_2,R_y)\Pr(R_y|x_1,x_2)} f(y|x_1, x_2)
\]
Missing values for two xs and y.

\[
f(y | x_1, x_2, R_{x_1}, R_{x_2}, R_{y}) = \frac{f(y, x_1, x_2, R_{x_1}, R_{x_2}, R_{y})}{f(x_1, x_2, R_{x_1}, R_{x_2}, R_{y})}
\]

\[
= \frac{\Pr(R_{x_1} | y, x_1, x_2, R_{x_2}, R_{y}) \Pr(R_{x_2} | y, x_1, x_2, R_{y}) \Pr(R_{y} | y, x_1, x_2) f(y | x_1, x_2) f(x_1, x_2)}{\Pr(R_{x_1} | x_1, x_2, R_{x_2}, R_{y}) \Pr(R_{x_2} | x_1, x_2, R_{y}) \Pr(R_{y} | x_1, x_2) f(x_1, x_2)}
\]

\[
= \frac{\Pr(R_{x_1} | y, x_1, x_2, R_{x_2}, R_{y}) \Pr(R_{x_2} | y, x_1, x_2, R_{y}) \Pr(R_{y} | y, x_1, x_2)}{\Pr(R_{x_1} | x_1, x_2, R_{x_2}, R_{y}) \Pr(R_{x_2} | x_1, x_2, R_{y}) \Pr(R_{y} | x_1, x_2)} f(y | x_1, x_2)
\]
Missing values for two xs and y.

MAR assumption

\[
f(y | x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y, x_1, x_2, R_{x_1}, R_{x_2}, R_y)}{f(x_1, x_2, R_{x_1}, R_{x_2}, R_y)}
\]

\[
= \frac{\Pr(R_{x_1} | y, x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, x_2, R_y) \Pr(R_y | y, x_1, x_2) f(y | x_1, x_2) f(x_1, x_2)}{\Pr(R_{x_1} | x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, x_2, R_y) \Pr(R_y | x_1, x_2) f(x_1, x_2)f(x_1, x_2)}
\]

\[
= \frac{\Pr(R_{x_1} | y, x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, x_2, R_y) \Pr(R_y | y, x_1, x_2)}{\Pr(R_{x_1} | x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, x_2, R_y) \Pr(R_y | x_1, x_2)} f(y | x_1, x_2)
\]

\[
= \frac{\Pr(R_{x_1} | y, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, R_y) \Pr(R_y | x_1, x_2)}{\Pr(R_{x_1} | x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, R_y) \Pr(R_y | x_1, x_2)} f(y | x_1, x_2)
\]
Missing values for two xs and y.

\[
f(y|x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y, x_1, x_2, R_{x_1}, R_{x_2}, R_y)}{f(x_1, x_2, R_{x_1}, R_{x_2}, R_y)}
\]

\[
= \frac{\Pr(R_{x_1} | y, x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, x_2, R_y) \Pr(R_y | y, x_1, x_2) f(y | x_1, x_2) f(x_1, x_2)}{\Pr(R_{x_1} | x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, x_2, R_y) \Pr(R_y | x_1, x_2) f(x_1, x_2)}
\]

\[
= \frac{\Pr(R_{x_1} | y, x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, x_2, R_y) \Pr(R_y | y, x_1, x_2) f(y | x_1, x_2)}{\Pr(R_{x_1} | x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, x_2, R_y) \Pr(R_y | x_1, x_2)}
\]

\[
= \frac{\Pr(R_{x_1} | y, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, R_y) \Pr(R_y | x_1, x_2) f(y | x_1, x_2)}{\Pr(R_{x_1} | x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, R_y) \Pr(R_y | x_1, x_2)}
\]
Missing values for two xs and y.

\[
f(y \mid x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y, x_1, x_2, R_{x_1}, R_{x_2}, R_y)}{f(x_1, x_2, R_{x_1}, R_{x_2}, R_y)}
\]

\[
= \frac{\Pr(R_{x_1} \mid y, x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} \mid y, x_1, x_2, R_y) \Pr(R_y \mid y, x_1, x_2) f(y \mid x_1, x_2) f(x_1, x_2)}{\Pr(R_{x_1} \mid x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} \mid x_1, x_2, R_y) \Pr(R_y \mid x_1, x_2) f(x_1, x_2)}
\]

\[
= \frac{\Pr(R_{x_1} \mid y, x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} \mid y, x_1, x_2, R_y) \Pr(R_y \mid y, x_1, x_2)}{\Pr(R_{x_1} \mid x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} \mid x_1, x_2, R_y) \Pr(R_y \mid x_1, x_2)} f(y \mid x_1, x_2)
\]

\[
= \frac{\Pr(R_{x_1} \mid y, x_2, R_{x_2}, R_y) \Pr(R_{x_2} \mid y, x_1, R_y)}{\Pr(R_{x_1} \mid x_2, R_{x_2}, R_y) \Pr(R_{x_2} \mid x_1, R_y)} f(y \mid x_1, x_2)
\]
Missing values for two xs and y.

\[
f(y|x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y,x_1,x_2,R_{x_1},R_{x_2},R_y)}{f(x_1,x_2,R_{x_1},R_{x_2},R_y)}
\]

\[
= \frac{\Pr(R_{x_1}|y,x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,x_2,R_y)\Pr(R_y|y,x_1,x_2)f(y|x_1,x_2)f(x_1,x_2)}{\Pr(R_{x_1}|x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,x_2,R_y)\Pr(R_y|x_1,x_2)f(x_1,x_2)}
\]

\[
= \frac{\Pr(R_{x_1}|y,x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,x_2,R_y)\Pr(R_y|y,x_1,x_2)}{\Pr(R_{x_1}|x_1,x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,x_2,R_y)\Pr(R_y|x_1,x_2)} f(y|x_1, x_2)
\]

\[
f(y|x_1, x_2) = \frac{\Pr(R_{x_1}|x_2,R_{x_2},R_y)\Pr(R_{x_2}|x_1,R_y)}{\Pr(R_{x_1}|y,x_2,R_{x_2},R_y)\Pr(R_{x_2}|y,x_1,R_y)} f(y|x_1, x_2, R_{x_1}, R_{x_2}, R_y)
\]
Missing values for two xs and y.

Observed

\[
f(y| x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y, x_1, x_2, R_{x_1}, R_{x_2}, R_y)}{f(x_1, x_2, R_{x_1}, R_{x_2}, R_y)}
\]

\[
= \frac{\Pr(R_{x_1} | y, x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, x_2, R_y) \Pr(R_y | y, x_1, x_2) f(y | x_1, x_2) f(x_1, x_2)}{\Pr(R_{x_1} | x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, x_2, R_y) \Pr(R_y | x_1, x_2) f(x_1, x_2)}
\]

\[
= \frac{\Pr(R_{x_1} | y, x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, x_2, R_y) \Pr(R_y | y, x_1, x_2)}{\Pr(R_{x_1} | x_1, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, x_2, R_y) \Pr(R_y | x_1, x_2)} f(y | x_1, x_2)
\]

\[
= \frac{\Pr(R_{x_1} | y, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, R_y)}{\Pr(R_{x_1} | x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, R_y)} f(y | x_1, x_2)
\]

\[
f(y | x_1, x_2) = \frac{\Pr(R_{x_1} | x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, R_y)}{\Pr(R_{x_1} | y, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, R_y)} f(y | x_1, x_2, R_{x_1}, R_{x_2}, R_y)
\]
Missing values for two x\(_s\) and y.

Not observed if \(x_1\) is missing

\[
f(y| x_1, x_2, R_{x_1}, R_{x_2}, R_y) = \frac{f(y, x_1, x_2, R_{x_1}, R_{x_2}, R_y)}{f(x_1, x_2, R_{x_1}, R_{x_2}, R_y)}
\]

\[
= \frac{\Pr(R_{x_1}|y, x_1, x_2, R_{x_2}, R_y)\Pr(R_{x_2}|y, x_1, x_2, R_y)\Pr(R_y|y, x_1, x_2)f(y| x_1, x_2)f(x_1, x_2)}{\Pr(R_{x_1}|x_1, x_2, R_{x_2}, R_y)\Pr(R_{x_2}|x_1, x_2, R_y)\Pr(R_y|x_1, x_2)f(x_1, x_2)}
\]

\[
= \frac{\Pr(R_{x_1}|y, x_1, x_2, R_{x_2}, R_y)\Pr(R_{x_2}|y, x_1, x_2, R_y)\Pr(R_y|y, x_1, x_2)}{\Pr(R_{x_1}|x_1, x_2, R_{x_2}, R_y)\Pr(R_{x_2}|x_1, x_2, R_y)\Pr(R_y|x_1, x_2)}f(y| x_1, x_2)
\]

\[
= \frac{\Pr(R_{x_1}|y, x_2, R_{x_2}, R_y)\Pr(R_{x_2}|y, x_1, R_y)}{\Pr(R_{x_1}|x_2, R_{x_2}, R_y)\Pr(R_{x_2}|x_1, R_y)}f(y| x_1, x_2)
\]

\[
f(y| x_1, x_2) = \frac{\Pr(R_{x_1}|x_2, R_{x_2}, R_y)\Pr(R_{x_2}|x_1, R_y)}{\Pr(R_{x_1}|y, x_2, R_{x_2}, R_y)\Pr(R_{x_2}|y, x_1, R_y)}f(y| x_1, x_2, R_{x_1}, R_{x_2}, R_y)
\]
Estimating the weight

\[\frac{\Pr(R_{x1} | x_2, R_{x2}, R_y) \Pr(R_{x2} | x_1, R_y)}{\Pr(R_{x1} | y, x_2, R_{x2}, R_y) \Pr(R_{x2} | y, x_1, R_y)} \]

1. The weight can be split up into two parts:

\[\frac{\Pr(R_{x1} | x_2, R_{x2}, R_y)}{\Pr(R_{x1} | y, x_2, R_{x2}, R_y)} \times \frac{\Pr(R_{x2} | x_1, R_y)}{\Pr(R_{x2} | y, x_1, R_y)} \]
Estimating the weight

\[
\frac{\Pr(R_{x_1} | x_2, R_{x_2}, R_y) \Pr(R_{x_2} | x_1, R_y)}{\Pr(R_{x_1} | y, x_2, R_{x_2}, R_y) \Pr(R_{x_2} | y, x_1, R_y)}
\]

1. The weight can be split up into two parts:

\[
\frac{\Pr(R_{x_1} | x_2, R_{x_2}, R_y)}{\Pr(R_{x_1} | y, x_2, R_{x_2}, R_y)} \times \frac{\Pr(R_{x_2} | x_1, R_y)}{\Pr(R_{x_2} | y, x_1, R_y)}
\]

2. For both the first and the second part only use cases which are observed on \(y \).
Estimating the weight

\[
\frac{\Pr(R_{x1}|x_2, R_{x2}, R_y) \Pr(R_{x2}|x_1, R_y)}{\Pr(R_{x1}|y, x_2, R_{x2}, R_y) \Pr(R_{x2}|y, x_1, R_y)}
\]

1. The weight can be split up into two parts:

\[
\frac{\Pr(R_{x1}|x_2, R_{x2}, R_y)}{\Pr(R_{x1}|y, x_2, R_{x2}, R_y)} \times \frac{\Pr(R_{x2}|x_1, R_y)}{\Pr(R_{x2}|y, x_1, R_y)}
\]

2. For both the first and the second part only use cases which are observed on \(y \).

3. The first part can be estimated like before with \texttt{logit} and \texttt{predict}.

Maarten L. Buis
Assessing the reasonableness of an imputation model
Estimating the weight

\[
\text{Pr}(R_{x_1} | x_2, R_{x_2}, R_y) \text{Pr}(R_{x_2} | x_1, R_y) \over \text{Pr}(R_{x_1} | y, x_2, R_{x_2}, R_y) \text{Pr}(R_{x_2} | y, x_1, R_y)
\]

1. The weight can be split up into two parts:

\[
\frac{\text{Pr}(R_{x_1} | x_2, R_{x_2}, R_y)}{\text{Pr}(R_{x_1} | y, x_2, R_{x_2}, R_y)} \times \frac{\text{Pr}(R_{x_2} | x_1, R_y)}{\text{Pr}(R_{x_2} | y, x_1, R_y)}
\]

2. For both the first and the second part only use cases which are observed on \(y \).

3. The first part can be estimated like before with \texttt{logit} and \texttt{predict}.

4. The second part can be estimated with \texttt{logit} and \texttt{predict}, but now with weights to correct for missing data in \(x_1 \).
A recursive algorithm

- In other words: With two xs with missing data the algorithm calls itself twice to solve two smaller missing data problems.
A recursive algorithm

- In other words: With two xs with missing data the algorithm calls itself twice to solve two smaller missing data problems.
- In principle this method could be expanded for any number of xs with missing data,
A recursive algorithm

- In other words: With two xs with missing data the algorithm calls itself twice to solve two smaller missing data problems.
- In principle this method could be expanded for any number of xs with missing data,
- but the number of calls to logit rises very quickly with the number of variables.

<table>
<thead>
<tr>
<th>number of variables</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of calls to logit</td>
<td>2</td>
<td>8</td>
<td>22</td>
<td>52</td>
<td>114</td>
<td>240</td>
</tr>
</tbody>
</table>
Number of variables

- Often the same variable enters a regression equation multiple time, e.g.:
 - interaction terms
 - dummy variables
 - polynomials
 - splines
Number of variables

- Often the same variable enters a regression equation multiple time, e.g.:
 - interaction terms
 - dummy variables
 - polynomials
 - splines

- These variables count as one variable, thus diminishing the computational load.
weightmis syntax

weightmis varlist [if] [in] [pw], command(string)
[missing(varlist) observed(varlist) double#(varlist)
generate(string) *]
Say, y, x_1, and x_2 contain missing values, and you want to estimate the following regression equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

weightmis y x_1 x_2, command(regress) /*
*/ missing(x1 x2)
Say, y, x_1, and x_2 contain missing values, and you want to estimate the following regression equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

weightmis y x_1 x_2 x_2 sq, command(regress) /*
/* missing(x_1 x_2) double2(x_2 sq)
example 3

Say, y, x_1, and x_2 contain missing values, and you want to estimate the following regression equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$$

weightmis y x1 x2 x1x2, command(regress) /*
 */ missing(x1 x2) double1(x1x2) double2(x1x2)
Outline

Missing Data

Multiple Imputation

Weighting
 theory
 weightmis

Application
Model

- Linear regression of highest achieved level of education \((educyr)\) on:
 - father’s occupational status \((fisei)\),
Model

- Linear regression of highest achieved level of education ($educyr$) on:
 - father’s occupational status ($fisei$),
 - Year in which the child is 12 (byr), and is added as a spline with three knots to allow for non-linearity,
Model

- Linear regression of highest achieved level of education \((educyr)\) on:
 - father’s occupational status \((fisei)\),
 - Year in which the child is 12 \((byr)\), and is added as a spline with three knots to allow for non-linearity,
 - an interaction between \(fisei\) and the splines of \(byr\),
Linear regression of highest achieved level of education (*educyr*) on:

- father’s occupational status (*fisei*),
- Year in which the child is 12 (*byr*), and is added as a spline with three knots to allow for non-linearity,
- an interaction between *fisei* and the splines of *byr*,
- and interactions of all variables with *female*.
Data

- International Stratification and Mobility File (ISMF) on the Netherlands.
Data

- International Stratification and Mobility File (ISMF) on the Netherlands.
- 51 surveys held between 1958 and 2005 with information on cohorts 1906-1990.
Data

- International Stratification and Mobility File (ISMF) on the Netherlands.
- 51 surveys held between 1958 and 2005 with information on cohorts 1906-1990.
- 96,761 respondents aged between 27 and 65.
Data

- International Stratification and Mobility File (ISMF) on the Netherlands.
- 51 surveys held between 1958 and 2005 with information on cohorts 1906-1990.
- 96,761 respondents aged between 27 and 65.
- Number of cases are unequally distributed over cohorts.
Summary of missing values using `misschk`

<table>
<thead>
<tr>
<th>#</th>
<th>Variable</th>
<th># Missing</th>
<th>% Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>educyr</td>
<td>1125</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>fisei</td>
<td>10082</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>female</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>byr</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Missing for which variables?

<table>
<thead>
<tr>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>795</td>
<td>0.82</td>
<td>1.16</td>
</tr>
<tr>
<td>9,752</td>
<td>10.08</td>
<td>11.24</td>
</tr>
<tr>
<td>85,884</td>
<td>88.76</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Total | 96,761 | 100.00|

Maarten L. Buis

Assessing the reasonableness of an imputation model
Imputation model

- Regress $fisei$ on $educyr$, $female$, byr (in dummies), dummies for survey, and all interactions.
Imputation model

- Regress $fisei$ on $educyr$, $female$, byr (in dummies), dummies for survey, and all interactions.
- For each missing value of $fisei$ draw a random value from a normal distribution whose mean is the predicted value of $fisei$ and whose standard deviation is the standard deviation of the errors.
Imputation model

- Regress $fisei$ on $educyr$, $female$, byr (in dummies), dummies for survey, and all interactions.
- For each missing value of $fisei$ draw a random value from a normal distribution whose mean is the predicted value of $fisei$ and and whose standard deviation is the standard deviation of the errors.
- Predictions can be improved by adding other variables, like father’s education ($feducyr$), mother’s education ($meducyr$), child’s occupational status ($isei$).
In practice the interactions with survey number, *female*, and *byr* are modeled by estimating separate models for each combination of survey, gender, and three year birthcohort.
Imputation model

- In practice the interactions with survey number, *female*, and *byr* are modeled by estimating separate models for each combination of survey, gender, and three year birthcohort.

- *feducyr*, and *meducyr* are only used if they were asked in that survey.
Imputation model

In practice the interactions with survey number, female, and byr are modeled by estimating separate models for each combination of survey, gender, and three year birthcohort.

feducyr, and meducyr are only used if they were asked in that survey.

Imputations are only made if enough complete observations are available (number of variables + 2).

- Of 10,082 missing cases for fisei 191 could not be imputed.
- Of 1,145 missing cases for educyr 148 could not be imputed.
Trends in Inequality of educational opportunity

difference in years of education between highest and lowest status

1920 1940 1960 1980
year in which respondent was 12

MI
men
women
weighted
men
women
CC
men
women
Weight versus level of education
Weight versus cohort

![Graph showing weight versus cohort over time]

- Missing Data
- Multiple Imputation
- Weighting
- Application

Maarten L. Buis
Assessing the reasonableness of an imputation model
Confidence intervals

assessing the reasonableness of an imputation model

data

missing data

multiple imputation

weighting

application
Percentage of variance due to average variance across datasets and variance between datasets

Maarten L. Buis Assessing the reasonableness of an imputation model
Conclusion

- The imputation model becomes part of the statistical model when using Multiple Imputation, and needs to be checked.
Conclusion

- The imputation model becomes part of the statistical model when using Multiple Imputation, and needs to be checked.
- One possible way of doing that is to compare the results with an alternative method that should also result in valid results.
Conclusion

- The imputation model becomes part of the statistical model when using Multiple Imputation, and needs to be checked.
- One possible way of doing that is to compare the results with an alternative method that should also result in valid results.
- One such method is weighting, as (to be) implemented in weightmis.
References

