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Introduction
Splines

Interpreting the results

The default is linear
I A large part of daily statistical practice consists of

estimating the relationship between two or more variables.

I The default is often to assume the relationships are linear.
I This assumption is (almost) always wrong but is still a very

good thing:
I The aim of a model is to simplify the situation such that

mere mortals can understand the patterns present in the
data.

I Assuming that a relationship is linear is a very natural and
useful simplification.

I This talk deals with the rare situation where we want to
consider non-linear effect.

I This could for example occur because:
I the relationship is too non-linear to be meaningfully

summarized by a linear relationship, or
I we are substantively interested in the non-linearity.
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A linear association
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Interpreting the results

How did I do that?

. sysuse auto, clear
(1978 Automobile Data)

. replace price = price / 1000
price was int now float
(74 real changes made)

. label variable price "price in 1000 dollars"

.

. reg price mpg

Source SS df MS Number of obs = 74
F( 1, 72) = 20.26

Model 139.44947 1 139.44947 Prob > F = 0.0000
Residual 495.615911 72 6.88355432 R-squared = 0.2196

Adj R-squared = 0.2087
Total 635.065382 73 8.69952578 Root MSE = 2.6237

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

mpg -.2388943 .0530767 -4.50 0.000 -.3447008 -.1330879
_cons 11.25306 1.170813 9.61 0.000 8.919088 13.58703

. predict y_lin
(option xb assumed; fitted values)

. twoway scatter price mpg || ///
> line y_lin mpg, ///
> sort clstyle(solid)

Maarten L. Buis Using and interpreting restricted cubic splines



Introduction
Splines

Interpreting the results

A linear spline
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Interpreting the results

How did I do that?

. mkspline linsp_mpg1 18 linsp_mpg2= mpg

. reg price linsp*

Source SS df MS Number of obs = 74
F( 2, 71) = 27.67

Model 278.152833 2 139.076416 Prob > F = 0.0000
Residual 356.912549 71 5.02693731 R-squared = 0.4380

Adj R-squared = 0.4222
Total 635.065382 73 8.69952578 Root MSE = 2.2421

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

linsp_mpg1 -1.20196 .1888701 -6.36 0.000 -1.578556 -.8253636
linsp_mpg2 -.0592943 .0568009 -1.04 0.300 -.1725521 .0539635

_cons 27.16221 3.189679 8.52 0.000 20.80217 33.52225

. test linsp_mpg1 = linsp_mpg2

( 1) linsp_mpg1 - linsp_mpg2 = 0

F( 1, 71) = 27.59
Prob > F = 0.0000

. predict y_linsp
(option xb assumed; fitted values)

. twoway scatter price mpg || line y_linsp mpg, sort clstyle(solid)
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A cubic spline
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Interpreting the results

How did I do that?

. mkspline cubsp_mpg1 18 cubsp_mpg2 = mpg, marginal

. foreach var of varlist cubsp* {
2. qui replace `var´ = `var´^3
3. }

. gen cubsp_sq = mpg^2

. gen cubsp_lin = mpg

. reg price cubsp*

Source SS df MS Number of obs = 74
F( 4, 69) = 11.16

Model 249.529494 4 62.3823734 Prob > F = 0.0000
Residual 385.535888 69 5.58747664 R-squared = 0.3929

Adj R-squared = 0.3577
Total 635.065382 73 8.69952578 Root MSE = 2.3638

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

cubsp_mpg1 -.0175977 .0136154 -1.29 0.201 -.0447597 .0095643
cubsp_mpg2 .0169481 .0143188 1.18 0.241 -.0116172 .0455134

cubsp_sq .9787628 .7142946 1.37 0.175 -.446216 2.403742
cubsp_lin -18.52005 12.34361 -1.50 0.138 -43.14487 6.104773

_cons 125.2162 70.09313 1.79 0.078 -14.61577 265.0482

. predict y_cubsp
(option xb assumed; fitted values)

. twoway scatter price mpg || line y_cubsp mpg, sort clstyle(solid)
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Interpreting the results

A restricted cubic spline
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Splines

Interpreting the results

How did I do that?

. mkspline2 rc = mpg, cubic knots(15 20 25)

. reg price rc*

Source SS df MS Number of obs = 74
F( 2, 71) = 21.87

Model 242.090418 2 121.045209 Prob > F = 0.0000
Residual 392.974964 71 5.53485864 R-squared = 0.3812

Adj R-squared = 0.3638
Total 635.065382 73 8.69952578 Root MSE = 2.3526

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

rc1 -.8567267 .151159 -5.67 0.000 -1.158129 -.5553242
rc2 .5791311 .1344838 4.31 0.000 .3109781 .8472842

_cons 21.79347 2.663314 8.18 0.000 16.48297 27.10397

. adjustrcspline , noci addplot(scatter price mpg, msymbol(Oh))
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Interpreting the results

The postrcspline package

I Available from SSC
I consists of three programs:

mkspline2 The same as mkspline except that it
leaves information behind that can be
used by the other commands.

adjustrcspline Displays the adjusted predictions.

mfxrcspline Displays marginal effects.
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Interpreting the results

Adjusted predictions

I Show the predicted outcome against the spline variable.

I What if we have other covariates?
I Predicted outcome for an observation with typical values

on the other covariates
. reg price rc* rep78 foreign

Source SS df MS Number of obs = 69
F( 4, 64) = 10.65

Model 230.445919 4 57.6114798 Prob > F = 0.0000
Residual 346.351028 64 5.41173481 R-squared = 0.3995

Adj R-squared = 0.3620
Total 576.796947 68 8.48230805 Root MSE = 2.3263

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

rc1 -.8688077 .1627389 -5.34 0.000 -1.193916 -.5436995
rc2 .543387 .1444228 3.76 0.000 .2548693 .8319048

rep78 -.0172764 .379311 -0.05 0.964 -.7750371 .7404844
foreign 1.607754 .8049689 2.00 0.050 -.0003563 3.215864

_cons 21.75074 3.289008 6.61 0.000 15.18019 28.32128

. adjustrcspline, at(foreign=0)
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Interpreting the results

Predicted price for domestic cars with average repair
status
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Introduction
Splines

Interpreting the results

Marginal effects

I Effect is how much does the predicted outcome change for
a unit change in the explanatory variable.

I This is the first derivative.

. mfxrcspline, yline(0)
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Interpreting the results

Change in predicted price for a unit change in mpg
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Introduction
Splines

Interpreting the results

Only regress?

I No, restricted cubic splines are just a transformation of an
explanatory variable.

I This transformed variable can be entered in any regression
command like logit or glm.

I This does influence how the adjusted prediction and
marginal effects should be computed.

I The postrcspline package will automatically recognize
regress, logit, logistic, betafit, probit,
poisson, cloglog, and glm.
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Interpreting the results

Example of a non-linear model (1)

. glm price rc* rep78 foreign, link(log) eform

Iteration 0: log likelihood = -154.66296
Iteration 1: log likelihood = -151.66685
Iteration 2: log likelihood = -151.50983
Iteration 3: log likelihood = -151.50982

Generalized linear models No. of obs = 69
Optimization : ML Residual df = 64

Scale parameter = 5.098444
Deviance = 326.3004275 (1/df) Deviance = 5.098444
Pearson = 326.3004275 (1/df) Pearson = 5.098444

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = ln(u) [Log]

AIC = 4.536517
Log likelihood = -151.5098231 BIC = 55.31761

OIM
price exp(b) Std. Err. z P>|z| [95% Conf. Interval]

rc1 .8763127 .0185517 -6.24 0.000 .8406961 .9134383
rc2 1.082826 .0224177 3.84 0.000 1.039767 1.127667

rep78 .9569288 .0559123 -0.75 0.451 .8533848 1.073036
foreign 1.445238 .2078801 2.56 0.010 1.090195 1.915907

. adjustrcspline, at(foreign=0) name(a) title(Adjusted predictions)

. mfxrcspline, at(foreign=0) yline(0) name(b) title(Marginal effects)

. graph combine a b, ysize(3)
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Interpreting the results

Example of a non-linear model (2)
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Splines

Interpreting the results

Syntax adjustrcspline

adjustrcspline
[

if
] [

in
]
,

[
at(var = #[var =

#[...]]) link(linkname)

custominvlink(inv_link_specification)

ciopts(rarea_options) noci level(#)

lineopts(line_options) addplot(plot)

generate(newvar1 [newvar2 newvar3])
]
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Interpreting the results

Syntax mfxrcspline

mfxrcspline
[

if
] [

in
]
,

[
at(var = #[var = #[...]])

link(linkname) customdydxb(dydxb_specification)

showknots ciopts(rarea_options) noci level(#)

lineopts(line_options) addplot(plot)

generate(newvar1 [newvar2 newvar3])
]
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Splines

Interpreting the results

conclusion

I Restricted cubic spline are an easy way of including an
explanatory variable in a smooth non-linear way in a wide
variety of models.

I The postrcspline package provides tools for
interpreting the results:

I adjustrcspline graphs the adjusted predictions
I mfxrcspline graphs the marginal effects

I These commands will work after regress, logit,
logistic, betafit, probit, poisson, cloglog, and
glm.
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