# Three models for combining information from causal indicators

#### The sheafcoef and propensreg package

#### Maarten L. Buis

Institut für Soziologie Eberhard Karls Universität Tübingen http://www.maartenbuis.nl

イロト イポト イヨト イヨト

## Introduction

 Sometimes we have multiple variables that measure the same latent concept.

イロト イポト イヨト イヨト

ъ

- Sometimes we have multiple variables that measure the same latent concept.
- ► For example,
  - a set of question that measure someone's IQ or degree of depression, or

イロト イポト イヨト イヨト

- Sometimes we have multiple variables that measure the same latent concept.
- For example,
  - a set of question that measure someone's IQ or degree of depression, or
  - someone's education and occupation may measure someone's socioeconomic status.

イロト イポト イヨト イヨト

- Sometimes we have multiple variables that measure the same latent concept.
- For example,
  - a set of question that measure someone's IQ or degree of depression, or
  - someone's education and occupation may measure someone's socioeconomic status.
- This is a good thing! But...

・ 回 ト ・ ヨ ト ・ ヨ ト

- Sometimes we have multiple variables that measure the same latent concept.
- For example,
  - a set of question that measure someone's IQ or degree of depression, or
  - someone's education and occupation may measure someone's socioeconomic status.
- This is a good thing! But, we need models to make the best use possible of this information.

・ 回 ト ・ ヨ ト ・ ヨ ト

## Effect indicators and causal indicators

 Effect indicators are variables that are influenced by the latent variable.



(4) 日本(4) 日本(日本)

# Effect indicators and causal indicators

- Effect indicators are variables that are influenced by the latent variable.
  - For example factor analysis (factor)



(4) 日本(4) 日本(日本)

# Effect indicators and causal indicators

- Effect indicators are variables that are influenced by the latent variable.
  - For example factor analysis (factor)
- Causal indicators are variables that influence the latent variable.



(4) 日本(4) 日本(日本)

# Effect indicators and causal indicators

- Effect indicators are variables that are influenced by the latent variable.
  - For example factor analysis (factor)
- Causal indicators are variables that influence the latent variable.
  - For example:
  - sheaf coefficients (sheafcoef),
  - parametrically weighted covariates, and
  - MIMIC models (propcnsreg).



#### The basic model

MIMIC

$$y = \beta_0 + (\lambda_0 + \lambda_1 z_1)\eta + \varepsilon_y$$
  
$$\eta = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + \varepsilon_\eta$$

Maarten L. Buis Three models for combining information from causal indicators

イロン イロン イヨン イヨン

æ

## The basic model

#### parametrically weighted covariates

$$y = \beta_0 + (\lambda_0 + \lambda_1 z_1)\eta + \varepsilon_y$$
  
$$\eta = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2$$

ヘロト ヘワト ヘビト ヘビト

ъ

### The basic model

Sheaf coefficients

$$y = \beta_0 + (\lambda_0) \eta + \varepsilon_y$$
  
$$\eta = \gamma_0 + \gamma_1 \mathbf{x}_1 + \gamma_2 \mathbf{x}_2$$

Maarten L. Buis Three models for combining information from causal indicators

イロン イロン イヨン イヨン

ъ

# identification

The empirical information we use to estimate the γs and λs is that we choose the γs to optimize the effect of η on y.

< 🗇 🕨

· < 프 > < 프 >

# identification

- The empirical information we use to estimate the γs and λs is that we choose the γs to optimize the effect of η on y.
- The empirical information we use to estimate the variance of ε<sub>η</sub> in the MIMIC model is that this model assumes that the total residual variance changes along z<sub>1</sub> according to var(ε<sub>y</sub>) + (λ<sub>0</sub> + λ<sub>1</sub>z<sub>1</sub>)<sup>2</sup> × var(ε<sub>η</sub>)

# identification

- The empirical information we use to estimate the γs and λs is that we choose the γs to optimize the effect of η on y.
- The empirical information we use to estimate the variance of ε<sub>η</sub> in the MIMIC model is that this model assumes that the total residual variance changes along z<sub>1</sub> according to var(ε<sub>y</sub>) + (λ<sub>0</sub> + λ<sub>1</sub>z<sub>1</sub>)<sup>2</sup> × var(ε<sub>η</sub>)
- η is a latent variable, so we need to fix its origin and its unit.
  - Fix the origin by setting  $\eta$  to 0 when  $x_1$  and  $x_2$  are both 0
  - Fix the unit by setting the standard deviation of  $\eta$  to 1.

・ 回 ト ・ ヨ ト ・ ヨ ト

#### Data preparation

```
. svsuse nlsw88, clear
(NLSW, 1988 extract)
. gen byte occ2 = occupation
(9 missing values generated)
. recode occ2 (2=1) (3 4 11 12 = 2) (5/10= 3) (13=.)
(occ2: 1920 changes made)
. label define occ2 1 "higher services" 2 "lower services" 3 "manual"
. label value occ2 occ2
. gen byte hs = grade == 12 if grade < .
(2 missing values generated)
. gen byte sc = grade > 12 & grade < 16 if grade < .
(2 missing values generated)
. gen byte c = grade >= 16 if grade < .
(2 missing values generated)
. replace tenure = tenure / 10
(2180 real changes made)
. gen white = race == 1 if race < .
. gen \ln w = \ln(wage)
```

Maarten L. Buis Three models for combining information from causal indicators

イロト イポト イヨト イヨト

E DQC

#### Sheaf coefficients after a linear regression

- . qui xi: reg ln\_w i.occ2 hs sc c
- . sheafcoef, latent( I\* ; hs sc c) post

| ln_w      | Coef.     | Std. Err. | t       | P> t  | [95% Conf. | Interval] |
|-----------|-----------|-----------|---------|-------|------------|-----------|
| pl        | .2000228  | .0124272  | 16.10   | 0.000 | .1756516   | .224394   |
| alIocc2_2 | -1.528682 | .1075842  | -14.21  | 0.000 | -1.739668  | -1.317696 |
| alIocc2_3 | -2.600971 | .0133063  | -195.47 | 0.000 | -2.627067  | -2.574876 |
| p2        | .144066   | .0124393  | 11.58   | 0.000 | .119671    | .168461   |
| a2_hs     | .9303067  | .2141218  | 4.34    | 0.000 | .5103867   | 1.350227  |
| a2_sc     | 2.205349  | .1904522  | 11.58   | 0.000 | 1.831848   | 2.57885   |
| a2_c      | 3.031032  | .133601   | 22.69   | 0.000 | 2.769024   | 3.293041  |
| _cons     | 1.933329  | .0378121  | 51.13   | 0.000 | 1.859174   | 2.007483  |

. test \_b[p1] = \_b[p2] (1) p1 - p2 = 0F(1, 2042) = 6.95

Prob > F = 0.0084

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Sheaf coefficients after logistic regression

. qui xi: logit union i.occ2 hs sc c

. sheafcoef, latent( \_I\* ; hs sc c) eform post

| union                                                            | Coef.                                                                           | Std. Err.                                                                        | Z                                                        | ₽> z                                                        | [95% Conf.                                                                          | Interval]                                                                      |
|------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| pl_e<br>alIocc2_2<br>alIocc2_3<br>p2_e<br>a2_hs<br>a2_sc<br>a2_c | 1.241842<br>1.58573<br>2.585204<br>1.028296<br>-1.15095<br>.6553856<br>1.394004 | .0855004<br>.5031156<br>.1054152<br>.0661664<br>5.973281<br>7.081814<br>7.161541 | 14.52<br>3.15<br>24.52<br>15.54<br>-0.19<br>0.09<br>0.19 | 0.000<br>0.002<br>0.000<br>0.000<br>0.847<br>0.926<br>0.846 | 1.074265<br>.5996415<br>2.378594<br>.8986119<br>-12.85837<br>-13.22471<br>-12.64236 | 1.40942<br>2.571818<br>2.791814<br>1.15798<br>10.55647<br>14.53549<br>15.43037 |
| _cons_e                                                          | .2045564                                                                        | .042083                                                                          | 4.86                                                     | 0.000                                                       | .1220/52                                                                            | .28/03/6                                                                       |

(\_e) indicates the variables whose coefficients have been exponentiated

イロン イボン イヨン イヨン

э.

### Syntax of sheafcoef

```
sheafcoef,
latent( varlist_1 [ ; varlist_2 [; varlist_3 [...]]] )
[ eform post iterate(#) level(#) ]
```

ヘロン 人間 とくほ とくほ とう

E DQC

#### Parametrically weighted covariates

. propensreg ln w white tenure, lambda(tenure white) /// ~

constrained(hs sc c) nolog

|                             | Number of obs | = | 2229   |
|-----------------------------|---------------|---|--------|
|                             | LR chi2(8)    | = | 133.01 |
| Log likelihood = -1607.2184 | Prob > chi2   | = | 0.0000 |

Constraint: sd of latent variables = 1

| 0.000<br>0.000<br>0.000 | .1457098<br>.2670473<br>1.173648                           | .2895508                                                                                                                   |
|-------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 0.000<br>0.000<br>0.000 | .1457098<br>.2670473<br>1.173648                           | .2895508<br>.3964233                                                                                                       |
| 0.000<br>0.000          | .2670473<br>1.173648                                       | .3964233                                                                                                                   |
| 0.000                   | 1.173648                                                   |                                                                                                                            |
|                         |                                                            | 1.330689                                                                                                                   |
|                         |                                                            |                                                                                                                            |
| 0.000                   | .3562099                                                   | .9166819                                                                                                                   |
| 0.000                   | 1.654631                                                   | 2.209211                                                                                                                   |
| 0.000                   | 2.574856                                                   | 2.930525                                                                                                                   |
|                         |                                                            |                                                                                                                            |
| 0.031                   | 0820303                                                    | 0038952                                                                                                                    |
| 0.000                   | 1427118                                                    | 0450128                                                                                                                    |
| 0.000                   | .2557131                                                   | .3542434                                                                                                                   |
|                         |                                                            |                                                                                                                            |
| 0.000                   | .4830266                                                   | .5122424                                                                                                                   |
| 3.22                    | Prob > chi2 =                                              | 0.522                                                                                                                      |
| 91                      |                                                            | _                                                                                                                          |
|                         | 0.000<br>0.000<br>0.031<br>0.000<br>0.000<br>0.000<br>3.22 | 0.000 .3562099<br>0.000 1.654631<br>0.000 2.574856<br>0.0310820303<br>0.0001427118<br>0.000 .4830266<br>3.22 Prob > chi2 = |

Maarten L. Buis

Three models for combining information from causal indicators

э

introduction Examples Conclusion

#### MIMIC model

. propensreg ln\_w white tenure, lambda(tenure white) /// ~

constrained(hs sc c) mimic nolog

|                             | Number of obs | = | 2229   |
|-----------------------------|---------------|---|--------|
|                             | LR chi2(8)    | = | 137.63 |
| Log likelihood = -1587.8862 | Prob > chi2   | = | 0.0000 |

Constraint: sd of latent variables = 1

| Coef.                            | Std. Err.                                                                                                                              | Z                                                                                                                                                                                                                                                                                                                                                                                                                                | ₽> z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [95% Conf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Interval]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .1154214<br>.354109<br>1.290095  | .0275711<br>.0309777<br>.0384749                                                                                                       | 4.19<br>11.43<br>33.53                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .061383<br>.2933937<br>1.214685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .1694599<br>.4148243<br>1.365504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .7559966<br>2.039394<br>2.805831 | .1473374<br>.1383171<br>.0899889                                                                                                       | 5.13<br>14.74<br>31.18                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .4672207<br>1.768298<br>2.629456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.044773<br>2.310491<br>2.982206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0658272<br>0035393<br>.2547694   | .0182428<br>.0108898<br>.0198169                                                                                                       | -3.61<br>-0.33<br>12.86                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.745<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1015825<br>0248829<br>.215929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 030072<br>.0178044<br>.2936097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .3016388                         | .0579338                                                                                                                               | 5.21                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .1880907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .4151869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .4684396                         | .0384153                                                                                                                               | 12.19                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .3931471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5437321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  | Coef.<br>.1154214<br>.354109<br>1.290095<br>.7559966<br>2.039394<br>2.805831<br>0658272<br>0035393<br>.2547694<br>.3016388<br>.4684396 | Coef.         Std. Err.           .1154214         .0275711           .354109         .0309777           1.290095         .0384749           .7559966         .1473374           2.033394         .1383171           2.805831         .0899889          0658272         .0182428           .0035393         .0108898           .2547694         .0198169           .3016388         .0579338           .4684396         .0384153 | Coef.         Std. Err.         z           .1154214         .0275711         4.19           .354109         .0309777         11.43           1.290095         .0384749         33.53           .7559966         .1473374         5.13           2.039394         .1383171         14.74           2.805831         .0899889         31.18          0658272         .0182428         -3.61          0035393         .0108898         -0.33           .2547694         .0198169         12.86           .3016388         .0579338         5.21           .4684396         .0384153         12.19 | Coef.         Std. Err.         z         P> z            .1154214         .0275711         4.19         0.000           .354109         .0309777         11.43         0.000           1.290095         .0384749         33.53         0.000           .7559966         .1473374         5.13         0.000           .7559966         .1473374         5.13         0.000           2.039394         .1383171         14.74         0.000           2.805831         .0899889         31.18         0.000          0658272         .0182428         -3.61         0.000          0035393         .0108898         -0.33         0.745           .2547694         .0198169         12.86         0.000           .3016388         .0579338         5.21         0.000           .4684396         .0384153         12.19         0.000 | Coef.         Std. Err.         z         P> z          [95% Conf.           .1154214         .0275711         4.19         0.000         .061383           .354109         .0309777         11.43         0.000         .2933937           1.290095         .0384749         33.53         0.000         1.214685           .7559966         .1473374         5.13         0.000         1.4672207           2.039394         .1383171         14.74         0.000         1.768298           2.805831         .0899889         31.18         0.000         2.629456          0658272         .0182428         -3.61         0.000        1015825          0035393         .0108898         -0.33         0.745        0248829           .2547694         .0198169         12.86         0.000         .215929           .3016388         .0579338         5.21         0.000         .1880907           .4684396         .0384153         12.19         0.000         .3931471 |

Maarten L. Buis

Three models for combining information from causal indicators

3

# Syntax of propensreg

```
propensed depvar [indepvars] [if] [in] [weight],
constrained(varlist) lambda(varlist) [
standardized leons unit(varname)
mimic
robust cluster(varname) level(#)
```

\_\_\_\_\_\_ em\_maximize\_options maximize\_options ]

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

# Conclusion (1)

 Causal indicators require a different strategy to recover the latent variable than effect indicators

・ 同 ト ・ ヨ ト ・ ヨ ト

- Causal indicators require a different strategy to recover the latent variable than effect indicators
- Models with causal indicators recover the latent variable by scaling the observed indicators to optimize the effect of the latent variable on the dependent variable.

・聞き ・ヨト ・ヨト

- Causal indicators require a different strategy to recover the latent variable than effect indicators
- Models with causal indicators recover the latent variable by scaling the observed indicators to optimize the effect of the latent variable on the dependent variable.
- A MIMIC model also recovers measurement error by making a parametric assumption on how the total residual variance changes over observed variables.

・ 回 ト ・ ヨ ト ・ ヨ ト

# Conclusion (2)

Three models have been discussed:

Maarten L. Buis Three models for combining information from causal indicators

イロト イポト イヨト イヨト

ъ

Three models have been discussed:

Sheaf coefficients no measurement error, effect of latent variable is constant

・ 同 ト ・ ヨ ト ・ ヨ ト

Three models have been discussed:

Sheaf coefficients no measurement error, effect of latent variable is constant Parametrically weighted covariates no measurement error, effect of latent variable changes over observed variables

一回 ト イヨト イヨト

Three models have been discussed:

Sheaf coefficients no measurement error, effect of latent variable is constant Parametrically weighted covariates no measurement error, effect of latent variable changes over observed variables MIMIC model measurement error, effect of latent variable changes over observed variables

一回 ト イヨト イヨト

Three models have been discussed:

Sheaf coefficients no measurement error, effect of latent variable is constant

Parametrically weighted covariates no measurement error, effect of latent variable changes over observed variables

- MIMIC model measurement error, effect of latent variable changes over observed variables
- The model with sheaf coefficients can be estimated using sheafcoef,

(同) くほり くほう

Three models have been discussed:

Sheaf coefficients no measurement error, effect of latent variable is constant

Parametrically weighted covariates no measurement error, effect of latent variable changes over observed variables

- MIMIC model measurement error, effect of latent variable changes over observed variables
- The model with sheaf coefficients can be estimated using sheafcoef,
- the model with parametrically weighted covariates and the MIMIC model can be estimated using propenses.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### References



#### Bollen, Kenneth A.

Multiple Indicators: Internal Consistency or No Necessary Relationship. *Quality and Quantity*, 18(4): 377-385, 1984.

#### Bollen, Kenneth A. and Richard Lennox.

Conventional Wisdom on Measurement: A Structural Equation Perspective. *Psychological Bulletin*, 110(2): 305-314, 1991.



Hauser, Robert M. and Arthur S. Goldberger.

The Treatment of Unobservable Variables in Path Analysis. Sociological Methodology 3: 81-117, 1971.



#### Heise, David R.

Employing nominal variables, induced variables, and block variables in path analysis. *Sociological Methods & Research* 1(2): 147-173, 1972.



#### Yamaguchi, Kazuo.

Regression models with parametrically weighted explanatory variables. Sociological Methodology 32: 219-245, 2002.

イロト イポト イヨト イヨト