Log-linear models for cross-tabulations using Stata

Maarten Buis
$19^{\text {th }}$ UK Stata Users Group meeting, 10 Sept. 2015

Outline

1 Introduction

2 A simple model: 2×2 table
2.1 basics
2.2 A log-linear model

3 More complex models
3.1 higher dimensional tables
3.2 Models for square tables

4 Conclusion

clarification of terminology

- Especially in economics the term log-linear models means
- log transform the explained/dependent/left-hand-side/y-variable, and then
- estimate a linear model using this transformed variable
- This is not how I will use that term
- Log-linear models is a set of models used to describe and test patterns in a cross-tabulation with 2 or more dimensions
- A useful analogy is that log-linear models are like ANOVA for categorical (ordinal) dependent variables.

What log-linear models are used for

- Log-linear models is a class of models that is used a lot in sociology
- A typical use would involve a table of the occupational class of the father against the occupational class of the son
- The two are related, but some cells need special attention
- For example, farmers mainly become farmers by inheriting a farm
- Log-linear models are used to quantify the association while still incorporating these special features.
- Such a flexible way of modeling cross tabulation is not only useful to sociologist, but a terminology has that proofed to be more of a hinderance.

An example: A 2×2 cross-tabulation

- The simplest cross-tabulation is a 2 by 2 table.
- Consider this German data from the ALLBUS (the German GSS) after reunification.

region of residence	wife should support husband's career disagree agree		Total
west	9,297	4,403	13,700
east	5,639	1,770	7,409
Total	14,936	6,173	21,109

- This is easier to interpret with row percentages:
. tab east husb_career, row nofreq

region of residence	wife should support husband's career disagree agree	Total	
west	67.86	32.14	100.00
east	76.11	23.89	100.00
Total	70.76	29.24	100.00

An example: Independence in a 2×2 cross-tabulation

- Remember the Pearson χ^{2} test: $\chi^{2}=\sum \frac{(O-E)^{2}}{E}$,
- where O are the observed counts and E are the expected counts if the variables are independent
- With independence we take the margins as given and distribute the observations over the cells such that there is no additional structure
- We know that $\frac{13,700}{21,109} \times 100 \%=64.90 \%$ of the observations are from the west, and that overall $\frac{14,936}{21,109} \times 100 \%=70.76 \%$ disagree
- So the expected count under independence for the West Germans who disagree is $0.6490 \times 0.7076 \times 21,109=9694$

region of residence	wife sho husband disagree	support career agree	Total
west	9,297	4,403	13,700
	9,693.6	4,006.4	13,700.0
east	5,639	1,770	7,409
	5,242.4	2,166.6	7,409.0
Total	14,936	6,173	21,109
	14,936.0	6,173.0	21,109.0
Pearson chi2(1) $=158.1252$			

- We can reject the hypothesis that the two variables are independent

Independence and odds ratios

- Independence is one of the patterns in a cross-tabulation which can be tested with log-linear models.
- Such patterns are often framed as odds ratios
- An odds is the expected number of 'successes' per 'failure', and an odds ratio is a ratio of odds

	wives should support		
		husband's career	
disagree	agree	total	
region of west	9,694	4,006	13,700
residence	east	5,242	2,167
total	14,936	6,173	21,109

- So under independence the odds of agreeing for someone from the West is $\frac{4,006}{9,694}=.41$ or about two persons that agree for every five that disagree
- Under independence the odds of agreeing for someone from the East is $\frac{2,167}{5242}=.41$
- Independence means that the odds are the same, or their ratio is 1.

prepare the data

- The first step is to load the table as data in Stata
- If you start with individual level data, than contract is very useful.
contract east husb_career, nomiss
list

	husb_c_r	east	_freq
1.	disagree	west	9297
2.	agree	west	4403
3.	disagree	east	5639
4.	agree	east	1770

estimate the independence model

- We can use poisson to estimate a model on these counts

Poisson regression				Number of obs $=\quad 4$			
				LR chi			5653.89
				Prob >			0.0000
Log likelihood = -101.13464				Pseudo			0.9655
_freq	IRR	Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]		
east							
east	. 5408029	. 0077989	-42.63	0.000	. 525	314	. 5563065
husb_career							
agree	. 4132967	. 0062536	-58.40	0.000	. 401	199	. 4257371
_cons	9693.647	93.26673	954.04	0.000	9512	561	9878.181

. est store indep

- The constant is the expected number of observations who are from the west and don't agree (both reference categories)
- The coefficient of 1 .east is the ratio by which this count increases/decreases when someone is from the east, i.e. it is the odds of coming from the east.
- The coefficient of 1 .husb_career is the odds of agreeing, which corresponds with the odds under independence we computed earlier.
- If we had included an interaction effect between east and husb_career, then that would represent the ratio of the odds of agreeing for West- and East-Germans, i.e. the odds ratio.
- By excluding that interaction we constrained the odds ratio to be 1

check if it is really an independence model

region of residence	wife should husband's disagree	pport reer agree	
west east	$\begin{array}{ll} 9693.647 & 4 \\ 5242.353 & 2 \end{array}$	$\begin{aligned} & 6.353 \\ & 6.647 \end{aligned}$	
tab east husb_career [fw=_freq], exp nofreqregion of wife should support residence husband's career disagree agree Total			
west east	$\begin{aligned} & 9,693.6 \\ & 5,242.4 \end{aligned}$	$\begin{aligned} & 4,006.4 \\ & 2,166.6 \end{aligned}$	$\begin{array}{r} 13,700.0 \\ 7,409.0 \end{array}$
Total	14,936.0	6,173.0	21,109.0

A likelihood ratio test for the independence model

- We can relax the independence assumption by adding an interaction effect between east and husb_career.

Poisson regression$\text { Log likelihood }=-20.497687$			Number of obs LR chi2 (3) Prob > chi2 Pseudo R2		$\begin{aligned} & = \\ & = \\ & = \end{aligned}$	$\begin{array}{r} 4 \\ 815.16 \\ 0.0000 \\ 0.9930 \end{array}$
_freq	IRR	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
east east	. 6065397	. 0102377	-29.62	0.000	. 5868024	. 6269409
agree	. 4735936	. 008664	-40.85	0.000	. 4569133	. 4908829
east\#husb_career east\#agree	. 6627738	. 0217506	-12.53	0.000	. 6214855	. 706805
_cons	9297	96.42095	881.04	0.000	9109.926	9487.915

. est store sat

- lrtest indep sat

Likelihood-ratio test \quad LR $\operatorname{chi2}(1)=161.27$
(Assumption: indep nested in sat) Prob > chi2 = 0.0000

- This interaction effect is the odds ratio.
- The odds of agreeing in the East is .66 times the odds of agreeing in the West.
- The odds of agreeing in the East is $(.66-1)^{*} 100 \%=-34 \%$ less than the odds of agreeing in the West.
- Not surprisingly this difference is statistically significant.

Log-linear models for a $2 \times 2 \times 2$ table

- This difference could be the result of the fact that the female labor force participation in the former GDR (East-Germany) was a lot higher than the FRG (West-Germany).
- Alternatively, the GDR was very effective at suppressing religion, and religious people were more likely to agree

. tab east relig, row nofreq					
region of residence	religious no affili		an affiliation		Total
west	12.53	87.47	100.00		
east	68.23	31.77	100.00		
Total	26.09	73.91	100.00		

. tab relig husb_career, row nofreq			
religious affiliation	wife should support husband's career disagree		
no agree	Total		
an affiliation	79.77	20.23	100.00
Total	70.20	33.80	100.00

- If the latter mechanism is the only reason, then the independence model should fit within the religious and non-religious sub-tables

prepare the data

- contract husb_career east relig, nomiss
• tabdisp east husb_career relig, cell(_freq)

estimate the conditional independence model

Poisson regression			Number of obs LR chi2(5) Prob > chi2 Pseudo R2		$\begin{array}{lr} = & 8 \\ = & 14883.91 \\ = & 0.0000 \\ = & 0.9946 \end{array}$	
_freq	IRR	Std. Err	z	$P>\|z\|$	[95\% Conf	Interval]
husb_career agree	. 2536758	. 0075059	-46.36	0.000	. 2393831	. 268822
```relig an affiliation```	4.954244	. 1281133	61.88	0.000	4.709404	5.211814
husb_career\#relig agree\#an affiliation	2.012611	. 0695921	20.23	0.000	1.880733	2.153737
east east	2.614402	. 0694701	36.17	0.000	2.481728	2.754169
$\begin{array}{r} \text { east\#relig } \\ \text { east\#an affiliation } \end{array}$	. 0743198	. 0026086	-74.06	0.000	. 069379	. 0796125
_cons	1561.807	36.51325	314.54	0.000	1491.857	1635.037

[^0]
## Does this model fit?

- predict mu
(option $n$ assumed; predicted number of events)
• tabdisp east husb_career relig, cell (_freq mu) format

## Does this model fit? (2)

- A common way of summarizing the fit is the index of dissimilarity, the proportion of observations that need to be 'shifted' in order to fully fit the data

```
. sum _freq , meanonly
local n = r(sum)
gen d = abs(_freq/`n'-mu/`n`)
sum d, meanonly
di "index of dissimilarity = " r(sum)/2
index of dissimilarity = . 00549226
```

- Alternatively, one can compare the model with the fully saturated model (the model with the best possible fit) using
- a likelihood ratio test
- BIC (negative values show support for the constrained model, positive values for the saturated model)

```
qui poisson _freq i.husb_career##i.east##i.relig
estimates store sat
lrtest cindep sat
Likelihood-ratio test LR chi2(2) = 5.82
(Assumption: cindep nested in sat)
Prob > chi2 = 0.0544
. di "BIC = " r(chi2) - r(df)*ln(`n`)
BIC = -14.086432
```


## Compare with a model with an effect of east

Poisson regression   Log likelihood = -39.067483			Number of obs LR chi2(6)   Prob > chi2   Pseudo R2		$\begin{array}{lr} = & 8 \\ = & 14886.05 \\ = & 0.0000 \\ = & 0.9948 \end{array}$	
_freq	IRR	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
husb_career agree	. 264348	. 0107801	-32.63	0.000	. 2440418	. 2863439
east	2.645171	. 0734729	35.02	0.000	2.505016	2.793167
husb_career\#east agree\#east	. 9443658	. 036985	-1.46	0.144	. 8745888	1.01971
$\begin{array}{r} \text { relig } \\ \text { an affiliation } \end{array}$	4.980792	. 1304105	61.32	0.000	4.73164	5.243064
husb_career\#relig agree\#an affiliation	1.949286	. 0796728	16.33	0.000	1.799221	2.111867
east\#relig east\#an affiliation	. 0748718	. 0026527	-73.16	0.000	. 069849	. 0802558
_cons	1548.624	37.40564	304.09	0.000	1477.019	1623.701

[^1]. lrtest cindep east
Likelihood-ratio test

LR chi2 (1) $=$	2.14
Prob $>$ chi2 $=$	0.1436

## log-linear models and logit models

- We could also estimate this model with logit

Poisson regression			Number of obs   LR chi2(5)   Prob > chi2   Pseudo R2		$\begin{array}{lr} = & 8 \\ = & 14883.91 \\ = & 0.0000 \\ = & 0.9946 \end{array}$	
_freq	IRR	Std. Err	z	$P>\|z\|$	[95\% Conf.	Interval]
husb_career agree	. 2536758	. 0075059	-46.36	0.000	. 2393831	. 268822
$\begin{array}{r} \text { relig } \\ \text { an affiliation } \end{array}$	4.954244	. 1281133	61.88	0.000	4.709404	5.211814
husb_career\#relig agree\#an affiliation	2.012611	. 0695921	20.23	0.000	1.880733	2.153737
east east	2.614402	. 0694701	36.17	0.000	2.481728	2.754169
east\#relig   east\#an affiliation	. 0743198	. 0026086	-74.06	0.000	. 069379	. 0796125
_cons	1561.807	36.51325	314.54	0.000	1491.857	1635.037

. logit husb_career i.relig [fw=_freq], or nolog
Logistic regression

## Notation for models

- It is customary to refer to the models using a short hand like [RW][ER]
- The letters are abbreviations for variables

```
E east
W husb_career
R relig
```

- letters grouped together are variables grouped together in Stata's factor variable notation with the \#

notation	factor variable notation
$[W][E][R]$	i.husb_career i.east i.relig
$[R W][E R]$	i.relig\#\#i.husb_career i.east\#\#i.relig
$[E W][W R][E R]$	i.east\#\#i.husb_career i.husb_career\#\#i.relig i.east\#\#i.relig
[WER]	i.husb_career\#\#i.east\#\#i.relig

## An example: homogamy

- We can look at the education of both partners, again using the German ALLBUS data



## Compare the independent and saturated models

```
contract meduc feduc, nomiss
qui poisson _freq i.meduc##i.feduc, irr
est store full
. qui poisson _freq i.meduc i.feduc, irr
. est store indep
. llingov , sat(full)
\begin{tabular}{r|rllrr}
& LL & \(d f\) & \(p\) & BIC & D \\
\hline\(r 1\) & 17484.97 & 16 & 0 & 17316.57 & .289634
\end{tabular}
```


## What is llingov?

```
program define llingov, rclass
 syntax, sat(name)
 if "`e(cmd)'" != "poisson" {
 di as error "llingov only works after poisson"
 exit 198
 }
 // index of dissimilarity
 local y "`e(depvar)'"
 tempvar diff
 tempname res
 qui predict double 'diff' if e(sample), n
 qui replace `diff' = abs(`y' - `diff')
 sum `y' if e(sample), meanonly
 local n = r(sum)
 sum 'diff' if e(sample), meanonly
 local d = r(sum)/(2*`n')
 // likelihood ratio and BIC
 qui lrtest . `sat'
 local p = r(p)
 local df = r(df)
 local ll = r(chi2)
 local bic = r(chi2) - r(df)*ln(`n')
 matrix `res' = `ll', `df', `p', `bic', `d'
 matrix colname `res' = "LL" "df" "p" "BIC" "D"
 matlist `res'
 return matrix res `res'
end
```


## Quasi-independence model

- Lets start with taking care of the diagonals
- We assume there are two groups:
- there is a group that insist on someone with the same education
- there is another group that randomly falls in love

```
. gen diag = (meduc==feduc)*meduc
. tabdisp meduc feduc, cell(diag)
```

male   education	low	lower voc.	female education		
	1	0	0	0	0
lower voc.	0	2	0	0	0
medium voc.	0	0	3	0	0
higher voc.	0	0	0	4	0
university	0	0	0	0	5

[^2]
## fit the quasi-independence model


llingov, sat(full)

	LL	df	p	BIC	D
r1	4882.975	11	0	4767.201	.1155445

## Interpret the coefficients

```
- predict mu, n
. tabdisp meduc feduc, c(mu)
```

| male <br> education | low | lower voc. | medium voc. | higher voc. | university |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 2068 | 449.7223 | 557.281 | 192.0957 | 111.901 |
| lower voc. | 2787.265 | 7200 | 3193.617 | 1100.846 | 641.2723 |
| medium voc. | 1656.683 | 1531.843 | 4845 | 654.3163 | 381.157 |
| higher voc. | 737.4627 | 681.8909 | 844.9767 | 1100 | 169.6697 |
| university | 1128.589 | 1043.544 | 1293.125 | 445.7424 | 2418 |

```
. di exp(_b[_cons]) * exp(_b[1.diag])
2068
. di exp(_b[_cons]) * exp(_b[2.meduc]) * exp(_b[2.feduc]) * exp(_b[2.diag])
7200
. di (681.8909 / 737.4627) / (1043.544 / 1128.589)
. }9999997
```


## Adding a diagonal

- The fit was not very good, so lets assume there is a third group: those that move one step up or down
- gen move_sym = abs(feduc-meduc) == 1
. tabdisp meduc feduc, cell(move_sym)

| male <br> education | low | lower voc. | female education |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 0 | 1 | 0 | 0 | 0 |
| lower voc. | 1 | 0 | 1 | 0 | 0 |
| medium voc. | 0 | 1 | 0 | 1 | 0 |
| higher voc. | 0 | 0 | 1 | 0 | 1 |
| university | 0 | 0 | 0 | 1 | 0 |

## Fit the model

Poisson regression				Number of obs LR chi2(14)   Prob > chi2   Pseudo R2		$\begin{array}{r} 25 \\ 34910.26 \\ 0.0000 \\ 0.9422 \end{array}$
_freq	IRR	Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]	
meduc						
lower voc. medium voc. higher voc. university	3.338166	. 1149113	35.02	0.000	3.120374	3.57116
	2.707588	. 0873711	30.87	0.000	2.541647	2.884363
	1.230837	. 0446596	5.72	0.000	1.146345	1.321555
	2.929866	. 0981173	32.10	0.000	2.743735	3.128624
feduc						
medium voc.	. 9065449	. 017194	-5.17	0.000	. 8734639	. 9408787
higher voc.	. 3061911	. 0083201	-43.56	0.000	. 2903107	. 3229403
university	. 3186353	. 010115	-36.03	0.000	. 2994145	. 33909
diag						
lower voc.	8.40447	. 3063953	58.39	0.000	7.824899	9.026968
medium voc.	5.045011	. 1533115	53.26	0.000	4.753299	5.354625
higher voc.	7.460018	. 3595832	41.69	0.000	6.787514	8.199152
university	6.61995	. 2616735	47.82	0.000	6.126443	7.153211
1.move_sym	2.773769	. 0548879	51.56	0.000	2.66825	2.883461
_cons	391.2549	13.0152	179.45	0.000	366.5594	417.6142


| . llingov, sat(full) |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | LL | df | p | BIC | D |
| r1 | 1925.922 | 10 | 0 | 1820.672 | .0590599 |

## interpret the coefficients

- predict mu, n
. tabdisp meduc feduc, $c(m u)$

| male <br> education | low | lower voc. | medium voc. | higher voc. | university |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 2068 | 711.8434 | 354.6902 | 119.7988 | 124.6676 |
| lower voc. | 3622.747 | 7200 | 3284.183 | 399.9083 | 416.1613 |
| medium voc. | 1059.357 | 1927.379 | 4845 | 899.7156 | 337.5486 |
| higher voc. | 481.5709 | 315.8745 | 1210.932 | 1100 | 425.6224 |
| university | 1146.325 | 751.9033 | 1039.195 | 973.5774 | 2418 |

```
. di exp(_b[_cons]) * exp(_b[1.diag])
2068
. di exp(_b[_cons]) * exp(_b[2.meduc]) * exp(_b[1.move_sym])
3622.7474
. di exp(_b[_cons]) * exp(_b[3.meduc])
1059.3571
. di (315.8745 / 481.5709) / (751.9033 / 1146.325)
1.0000002
```


## Adding asymmetry

- descriptively we found that men were more likely to marry 'down' than 'up'
- lets incorporate that in our previous model

```
. gen move_asym = (meduc-feduc==1) + 2*(meduc-feduc==-1)
. tabdisp meduc feduc, cell(move_asym)
```

male   education	low	lower voc.	female education		
low	0	2	0	0	0
lower voc.	1	0	2	0	0
medium voc.	0	1	0	0	0
higher voc.	0	0	1	0	0
university	0	0	0	1	0

[^3]
## Fit the model



| . llingov, sat(full) |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | LL | df | p | BIC | D |
| r1 | 1633.308 | 9 | 0 | 1538.583 | .0581226 |

## Interpret the coefficients

```
- predict mu, n
. tabdisp meduc feduc, c(mu)
```

| male <br> education | low | lower voc. | medium voc. | higher voc. | university |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 2068 | 581.431 | 442.0367 | 140.0232 | 147.509 |
| lower voc. | 3885.387 | 7200 | 2924.181 | 444.8251 | 468.6058 |
| medium voc. | 998.2699 | 2130.063 | 4845 | 727.585 | 368.0827 |
| higher voc. | 416.5121 | 290.702 | 1406.983 | 1100 | 319.8025 |
| university | 1009.83 | 704.8046 | 1115.798 | 1080.567 | 2418 |

```
. di exp(_b[_cons]) * exp(_b[1.diag])
2068
. di exp(_b[_cons]) * exp(_b[2.meduc]) * exp(_b[1.move_asym])
3885.3876
. di exp(_b[_cons]) * exp(_b[2.feduc]) * exp(_b[2.move_asym])
581.431
```


## Unidiff models

- This table involves respondents that were born between 1900 and 1993, we may want to adjust for that
- We could do that as before
- Alternatively, we could model the table for the oldest cohort and say that the next cohort is the same except that all the parameters are $\times$ percent larger or smaller
- So the pattern remains the same, but the strength of the association increases or decreases by $x$ percent.
- You need a user written package to estimate that: unidiff by Maurizio Pisati


## Estimation of a unidiff model

> unidiff _freq   (output omitted)   Table structure	$\begin{aligned} & \text { row (me } \\ & \text { (mult) } \end{aligned}$	c)   patt	$\begin{aligned} & \text { col(feduc } \\ & \text { ern(fi) } \end{aligned}$	laye mbda	$\begin{aligned} & (\text { coh) // } \\ & \text { awlog) } \end{aligned}$				
Name Label						N. of categories			
Row med   Column fed   Layer coh	$\begin{aligned} & \mathrm{m} \\ & \mathrm{f} \end{aligned}$	male	education					$5$	
Model specification									
Layer effect: multiplicative R-C association pattern: full interaction Additional variables: none									
Goodness-of-fit statistics									
Model	N	df	X2	p	G2	p	rG2	BIC	DI
Cond. indep.	37165	64	17778.3	0.00	15352.8	0.00	0.0	14679.3	26.1
Null effect	37165	48	254.6	0.00	247.7	0.00	98.4	-257.4	2.6
Multipl. effect	37165	45	239.5	0.00	237.1	0.00	98.5	-236.4	2.5

## Interpretation of a unidiff model

Phi parameters (layer scores)
coh
---:
1900
1925
1950
1975

Psi parameters (R-C association scores)

male   education	low	fower	medium	higher	univer
	0.00	0.00	0.00	0.00	0.00
lower voc.	0.00	0.57	0.43	0.30	0.29
medium voc.	0.00	0.59	1.13	0.98	1.05
higher voc.	0.00	0.53	1.04	1.51	1.44
university	0.00	0.65	1.25	1.58	2.13

## Interpretation of a unidiff model (2)

## Total interaction effects (raw) - Additive form

coh and male education	female education				
1900					
low	0.00	0.00	0.00	0.00	0.00
lower voc.	0.00	1.59	1.19	0.82	0.81
medium voc.	0.00	1.64	3.11	2.70	2.90
higher voc.	0.00	1.46	2.87	4.16	3.97
university	0.00	1.80	3.45	4.36	5.87
1925					
low	0.00	0.00	0.00	0.00	0.00
lower voc.	0.00	1.52	1.14	0.78	0.78
medium voc.	0.00	1.58	2.99	2.59	2.78
higher voc.	0.00	1.40	2.75	3.99	3.81
university	0.00	1.73	3.31	4.18	5.63
1950					
low	0.00	0.00	0.00	0.00	0.00
lower voc.	0.00	1.56	1.17	0.81	0.80
medium voc.	0.00	1.62	3.07	2.66	2.86
higher voc.	0.00	1.44	2.83	4.10	3.91
university	0.00	1.78	3.40	4.30	5.79
1975					
low	0.00	0.00	0.00	0.00	0.00
lower voc.	0.00	1.40	1.05	0.72	0.71
medium voc.	0.00	1.44	2.74	2.38	2.55
higher voc.	0.00	1.29	2.52	3.66	3.49
university	0.00	1.58	3.03	3.83	5.17

. di 2.4296*. 65
1.57924
. di 1.58/1.80

## Summary

- Log-linear models describe and test patterns in cross-tabulations
- The simplest pattern is independence, the counts in cells are only determined by the margins
- Many of these models can be estimated using poisson
- With higher dimensional tables we can look if independence holds within sub-tables
- A more complex model is quasi-independence. There are two groups: one stays on the diagonal and one follows a independence pattern
- We can complicate the model even more, for example by adding additional diagonals, but there are many more ways of describing such tables.
- We can compare tables by saying that the basic structure is the same, but all the effects are $x \%$ larger are smaller than the reference table.
- What I did not discuss are log-linear models for ordinal variables, common models for such tables are stereotyped ordered regression and the RCII (Row Column II) model.


[^0]:    . est store cindep

[^1]:    . est store east

[^2]:    - label value diag ed

[^3]:    . label define m 1 "down" 2 "up"
    . label value move_asym m

