

Log-linear models for cross-tabulations using Stata

Maarten Buis 19th UK Stata Users Group meeting, 10 Sept. 2015

Outline

- 1 Introduction
- 2 A simple model: 2×2 table
 - 2.1 basics
 - 2.2 A log-linear model
- 3 More complex models
 - 3.1 higher dimensional tables
 - 3.2 Models for square tables
- 4 Conclusion

clarification of terminology

- Especially in economics the term log-linear models means
 - log transform the explained/dependent/left-hand-side/y-variable, and then
 - estimate a linear model using this transformed variable
- This is **not** how I will use that term
- Log-linear models is a set of models used to describe and test patterns in a cross-tabulation with 2 or more dimensions
- A useful analogy is that log-linear models are like ANOVA for categorical (ordinal) dependent variables.

What log-linear models are used for

- Log-linear models is a class of models that is used a lot in sociology
- A typical use would involve a table of the occupational class of the father against the occupational class of the son
- The two are related, but some cells need special attention
- For example, farmers mainly become farmers by inheriting a farm
- Log-linear models are used to quantify the association while still incorporating these special features.
- Such a flexible way of modeling cross tabulation is not only useful to sociologist, but a terminology has that proofed to be more of a hinderance.

An example: A 2 \times 2 cross-tabulation

- The simplest cross-tabulation is a 2 by 2 table.
- Consider this German data from the ALLBUS (the German GSS) after reunification.

. tab east husb_career				
region of	wife should husband´s	support career		
residence	disagree	agree	Total	
west east	9,297 5,639	4,403 1,770	13,700 7,409	
Total	14,936	6,173	21,109	

- This is easier to interpret with row percentages:

		-	
region of	wife should husband´s	support career	
residence	disagree	agree	Total
west east	67.86 76.11	32.14 23.89	100.00 100.00
Total	70.76	29.24	100.00

. tab east husb_career, row nofreq

An example: Independence in a 2 × 2 cross-tabulation

- Remember the Pearson χ^2 test: $\chi^2 = \sum \frac{(O-E)^2}{E}$,
- where *O* are the observed counts and *E* are the expected counts if the variables are independent
- With independence we take the margins as given and distribute the observations over the cells such that there is no additional structure
- We know that $\frac{13,700}{21,109} \times 100\% = 64.90\%$ of the observations are from the west, and that overall $\frac{14,936}{21,109} \times 100\% = 70.76\%$ disagree
- So the expected count under independence for the West Germans who disagree is $0.6490 \times 0.7076 \times 21, 109 = 9694$

. tab east l	nusb_career, e	xp chi2 nok	ey
region of	wife should husband´s d	support career	
residence	disagree	agree	Total
west	9,297	4,403	13,700
	9,693.6	4,006.4	13,700.0
east	5,639	1,770	7,409
	5,242.4	2,166.6	7,409.0
Total	14,936	6,173	21,109
D.	14,936.0	6,173.0	21,109.0
Pe		- 100.1202	FI = 0.000

- We can reject the hypothesis that the two variables are independent

Independence and odds ratios

- Independence is one of the patterns in a cross-tabulation which can be tested with log-linear models.
- Such patterns are often framed as odds ratios
- An odds is the expected number of 'successes' per 'failure', and an odds ratio is a ratio of odds

		wives shoul husband's		
		disagree	agree	total
region of	west	9,694	4,006	13,700
residence	east	5,242	2,167	7,409
total		14,936	6,173	21,109

- So under independence the odds of agreeing for someone from the West is $\frac{4,006}{9,694} = .41$ or about two persons that agree for every five that disagree
- Under independence the odds of agreeing for someone from the East is $\frac{2.167}{5242} = .41$
- Independence means that the odds are the same, or their ratio is 1.

prepare the data

- The first step is to load the table as data in Stata
- If you start with individual level data, than contract is very useful.

. contract east husb_career, nomiss

. list

	husb_c _~ r	east	_freq
1. 2. 3. 4.	disagree agree disagree agree	west west east east	9297 4403 5639 1770

estimate the independence model

- We can use poisson to estimate a model on these counts

. poisson _fre	eq i.east i.hu	isb_career,	irr nolog				
Poisson regres	ssion			Number of	f obs	=	4
U				LR chi2(2	2)	=	5653.89
				Prob > cł	ni2	=	0.0000
Log likelihood	1 = -101.13464	Ł		Pseudo R2	2	=	0.9655
_freq	IRR	Std. Err.	z	P> z	[95%	Conf.	Interval]
east east	.5408029	.0077989	-42.63	0.000	.5257	314	.5563065
husb_career							
agree	.4132967	.0062536	-58.40	0.000	.4012	199	.4257371
_cons	9693.647	93.26673	954.04	0.000	9512.	561	9878.181

. est store indep

- The constant is the expected number of observations who are from the west and don't agree (both reference categories)
- The coefficient of 1.east is the ratio by which this count increases/decreases when someone is from the east, i.e. it is the odds of coming from the east.
- The coefficient of 1.husb_career is the odds of agreeing, which corresponds with the odds under independence we computed earlier.
- If we had included an interaction effect between east and husb_career, then that would represent the ratio of the odds of agreeing for West- and East-Germans, i.e. the odds ratio.
- By excluding that interaction we constrained the odds ratio to be 1

check if it is really an independence model

. predict mu

(option n assumed; predicted number of events)

. tabdisp east husb_career, cell(mu)

region of residence	wife shoul husband´ disagree	d support s career agree
west	9693.647	4006.353
east	5242.353	2166.647

. tab east husb_career [fw=_freq], exp nofreq

region of	wife should support husband's career				
residence	disagree	agree	Total		
west east	9,693.6 5,242.4	4,006.4 2,166.6	13,700.0 7,409.0		
Total	14,936.0	6,173.0	21,109.0		

A likelihood ratio test for the independence model

We can relax the independence assumption by adding an interaction effect between east and husb career.

. poisson _freq i.	east##i.husb	_career, irr	nolog			
Poisson regression Log likelihood = -20.497687		Nu LR Pr Ps	mber of obs chi2(3) ob > chi2 eudo R2	= = { = =	4 5815.16 0.0000 0.9930	
_freq	IRR	Std. Err.	z	P> z	[95% Conf	. Interval]
east east	.6065397	.0102377	-29.62	0.000	.5868024	.6269409
husb_career agree	.4735936	.008664	-40.85	0.000	.4569133	.4908829
east#husb_career east#agree	.6627738	.0217506	-12.53	0.000	.6214855	.706805
_cons	9297	96.42095	881.04	0.000	9109.926	9487.915
. est store sat						

. lrtest indep sat

Likelihood-ratio test	LR chi2(1) =	161.27
(Assumption: indep nested in sat)	Prob > chi2 =	0.0000

- This interaction effect is the odds ratio.
- The odds of agreeing in the East is .66 times the odds of agreeing in the West.
- The odds of agreeing in the East is (.66-1)*100%= -34% less than the odds of agreeing in the West.
- Not surprisingly this difference is statistically significant.

Log-linear models for a 2 \times 2 \times 2 table

- This difference could be the result of the fact that the female labor force participation in the former GDR (East-Germany) was a lot higher than the FRG (West-Germany).
- Alternatively, the GDR was very effective at suppressing religion, and religious people were more likely to agree

. tab east relig, row nofreq				
region of	religious	affiliation	Total	
residence	no affili	an affili		
west	12.53	87.47	100.00	
east	68.23	31.77	100.00	
Total	26.09	73.91	100.00	

. tab relig husb_career, row nofreq

religious	wife should support husband´s career			
affiliation	disagree	agree	Total	
no affiliation an affiliation	79.77 66.20	20.23 33.80	100.00 100.00	
Total	70.76	29.24	100.00	

- If the latter mechanism is the only reason, then the independence model should fit within the religious and non-religious sub-tables

prepare the data

. contract husb_career east relig, nomiss

. tabdisp east husb_career relig, cell(_freq)

	religious affiliation and wife should support husband's career						
region of	- no affili	lation -	— an affili	ation -			
residence	disagree	agree	disagree	agree			
west	1572	386	7690	3998			
east	4073	1046	1551	720			

estimate the conditional independence model

. poisson _freq i.husb	_career##i.re	lig i.east##	i.relig,	irr nol	og	
Poisson regression				of obs (5) chi2	= 8 = 14883.91 = 0.0000	
Log likelihood = -40.13	36821		Pseudo 1	R2	= 0.9946	
_freq	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
husb_career agree	. 2536758	.0075059	-46.36	0.000	.2393831	.268822
relig an affiliation	4.954244	.1281133	61.88	0.000	4.709404	5.211814
husb_career#relig agree#an affiliation	2.012611	.0695921	20.23	0.000	1.880733	2.153737
east east	2.614402	.0694701	36.17	0.000	2.481728	2.754169
east#relig east#an affiliation	.0743198	.0026086	-74.06	0.000	.069379	.0796125
_cons	1561.807	36.51325	314.54	0.000	1491.857	1635.037

. est store cindep

Does this model fit?

. predict mu

(option n assumed; predicted number of events)

. tabdisp east husb_career relig, cell(_freq mu) format(%9.0f)

region of	religious affiliation and wife should support husband´s career - no affiliation an affiliation -							
residence	disagree	agree	disagree	agree				
west	1572	386	7690	3998				
	1562	396	7738	3950				
east	4073	1046	1551	720				
	4083	1036	1503	768				

Does this model fit? (2)

- A common way of summarizing the fit is the index of dissimilarity, the proportion of observations that need to be 'shifted' in order to fully fit the data

```
. sum _freq , meanonly
. local n = r(sum)
. gen d = abs(_freq/`n´-mu/`n´)
. sum d, meanonly
. di "index of dissimilarity = " r(sum)/2
index of dissimilarity = .00549226
```

- Alternatively, one can compare the model with the fully saturated model (the model with the best possible fit) using
 - a likelihood ratio test
 - BIC (negative values show support for the constrained model, positive values for the saturated model)

```
. qui poisson _freq i.husb_career##i.east##i.relig
. estimates store sat
. lrtest cindep sat
Likelihood-ratio test LR chi2(2) = 5.82
(Assumption: cindep nested in sat) Prob > chi2 = 0.0544
. di "BIC = " r(chi2) - r(df)*ln(`n`)
BIC = -14.086432
```

Compare with a model with an effect of east

. poisson _freq i.husb_	_career##i.ea	st i.husb_ca	areer##i.	relig i.e	east##i.relig,	irr nolog
Poisson regression				of obs (6) chi2	= 8 = 14886.05 = 0.0000	
Log likelihood = -39.06	67483		Pseudo 1	R2	= 0.994	8
_freq	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
husb_career agree	. 264348	.0107801	-32.63	0.000	.2440418	.2863439
east east	2.645171	.0734729	35.02	0.000	2.505016	2.793167
husb_career#east agree#east	.9443658	.036985	-1.46	0.144	.8745888	1.01971
relig an affiliation	4.980792	.1304105	61.32	0.000	4.73164	5.243064
husb_career#relig agree#an affiliation	1.949286	.0796728	16.33	0.000	1.799221	2.111867
east#relig east#an affiliation	.0748718	.0026527	-73.16	0.000	.069849	.0802558
cons	1548.624	37.40564	304.09	0.000	1477.019	1623.701
. est store east						
. lrtest cindep east						
Likelihood-ratio test (Assumption: cindep nes	sted in east)		Ll P:	R chi2(1) rob > chi	= 2.14 12 = 0.1436	

log-linear models and logit models

We could also estimate this model with logit -

. poisson _freq i.husb	_career##reli	g i.east##re	elig, irr	nolog		
Poisson regression				Number of obs LR chi2(5) Prob > chi2 Pseudo R2		8 33.91 .0000 .9946
	IRR	Std. Err.	Z	P> z	[95% C	onf. Interval]
husb_career agree	.2536758	.0075059	-46.36	0.000	. 239383	31 .268822
relig an affiliation	4.954244	.1281133	61.88	0.000	4.7094	04 5.211814
husb_career#relig agree#an affiliation	2.012611	.0695921	20.23	0.000	1.88073	33 2.153737
east east	2.614402	.0694701	36.17	0.000	2.48172	28 2.754169
east#relig east#an affiliation	.0743198	.0026086	-74.06	0.000	.0693	79 .0796125
_cons	1561.807	36.51325	314.54	0.000	1491.8	57 1635.037
. logit husb_career i.1	relig [fw=_fr	eq], or nold	og			
Logistic regression			Number LR chi2 Prob >	of obs (1) chi2	= 2: = 4: = 0	1,036 34.48 .0000

Log likelihood = -12493.716

relig

_cons

Odds Ratio

2.012611

.2536759

Std. Err.

.0695921

.0075059

husb_career

an affiliation

=

1.880732

.2393831

0.0171

2.153737

.268822

[95% Conf. Interval]

Pseudo R2

P>|z|

0.000

0.000

z

20.23

-46.36

Notation for models

- It is customary to refer to the models using a short hand like [RW][ER]
- The letters are abbreviations for variables
 - E east
 - W husb_career
 - R relig
- letters grouped together are variables grouped together in Stata's factor variable notation with the #

notation	factor variable notation
[W][E][R]	i.husb_career i.east i.relig
[RW][ER]	i.relig##i.husb_career i.east##i.relig
[EW][WR][ER]	i.east##i.husb_career i.husb_career##i.relig i.east##i.relig
[WER]	i.husb_career##i.east##i.relig

An example: homogamy

- We can look at the education of both partners, again using the German ALLBUS data

male	e female education					
education	low	lower voc	medium vo	higher vo	universit	Total
low	2,068	703	426	122	60	3,379
	61.20	20.80	12.61	3.61	1.78	100.00
lower voc.	4,555	7,200	2,523	416	229	14,923
	30.52	48.25	16.91	2.79	1.53	100.00
medium voc.	1,032	1,792	4,845	856	544	9,069
	11.38	19.76	53.42	9.44	6.00	100.00
higher voc.	334	472	1,157	1,100	471	3,534
	9.45	13.36	32.74	31.13	13.33	100.00
university	389	740	1,783	999	2,418	6,329
	6.15	11.69	28.17	15.78	38.21	100.00
Total	8,378	10,907	10,734	3,493	3,722	37,234
	22.50	29.29	28.83	9.38	10.00	100.00

. tab meduc feduc, row nokey

Compare the independent and saturated models

. contract me	duc feduc, nomi	SS						
. qui poisson	. qui poisson _freq i.meduc##i.feduc, irr							
. est store fi	111							
. qui poisson . est store in . llingov , sa	. qui poisson _freq i.meduc i.feduc, irr . est store indep . llingov . sat(full)							
	LL	df	р	BIC	D			
r1	17484.97	16	0	17316.57	.289634			

What is llingov?

```
program define llingov, rclass
    syntax, sat(name)
    if "`e(cmd)'" != "poisson" {
        di as error "llingov only works after poisson"
        exit 198
    }
    // index of dissimilarity
   local y "`e(depvar)'"
    tempvar diff
    tempname res
    qui predict double `diff' if e(sample), n
    qui replace `diff' = abs(`y' - `diff')
    sum `y' if e(sample), meanonly
    local n = r(sum)
    sum `diff' if e(sample), meanonly
    local d = r(sum)/(2*n')
    // likelihood ratio and BIC
    qui lrtest . `sat'
    local p = r(p)
    local df = r(df)
    local ll = r(chi2)
    local bic = r(chi2) - r(df)*ln(`n')
    matrix `res' = `ll', `df', `p', `bic', `d'
    matrix colname `res' = "LL" "df" "p" "BIC" "D"
    matlist `res'
    return matrix res `res'
```

end

Quasi-independence model

- Lets start with taking care of the diagonals
- We assume there are two groups:
 - there is a group that insist on someone with the same education
 - there is another group that randomly falls in love

. gen diag = (meduc==feduc)*meduc

. tabdisp meduc feduc, cell(diag)

male education	low	fe lower voc.	emale educatio medium voc.	on higher voc.	university
low	1	0	0	0	0
lower voc.	0	2	0	0	0
medium voc.	0	0	3	0	0
higher voc.	0	0	0	4	0
university	0	0	0	0	5

. label value diag ed

fit the quasi-independence model

. poisson _freq i.meduc i.feduc i.diag, irr nolog

Poisson regres	ssion			Number LR ch Prob 2	r of obs = i2(13) = > chi2 =	25 31953.20 0.0000
Log likelihood	1 = -2548.789	1		Pseud	o R2 =	0.8624
_freq	IRR	Std. Err.	Z	P> z	[95% Conf.	. Interval]
meduc						
lower voc.	5.730713	.1767324	56.61	0.000	5.394584	6.087785
medium voc.	3.406199	.1108968	37.64	0.000	3.195634	3.630637
higher voc.	1.516249	.0525283	12.01	0.000	1.416713	1.622778
university	2.320418	.0748851	26.08	0.000	2.178191	2.471931
feduc						
lower voc.	.9246445	.0203206	-3.56	0.000	.8856625	.9653422
medium voc.	1.145789	.0216409	7.21	0.000	1.104149	1.188999
higher voc.	.3949555	.0095705	-38.34	0.000	.3766361	.4141659
university	.2300723	.0070539	-47.93	0.000	.2166542	.2443214
diag						
low	4.251879	.1642796	37.46	0.000	3.941787	4.586367
lower voc.	2.793698	.0721779	39.76	0.000	2.655754	2.938807
medium voc.	2.552405	.0689381	34.69	0.000	2.420803	2.691161
higher voc.	3.77663	.1606407	31.24	0.000	3.474547	4.104977
university	9.312283	.3617783	57.44	0.000	8.629534	10.04905
_cons	486.3731	15.45148	194.75	0.000	457.0124	517.6202
. llingov, sat	t(full)					
	LL	df	р		BIC I)

11

r1

4882.975

.1155445

0 4767.201

Interpret the coefficients

. predict mu, n

. tabdisp meduc feduc, c(mu)

male education	low	fe lower voc.	emale educatio medium voc.	on higher voc.	university
low	2068	449.7223	557.281	192.0957	111.901
lower voc.	2787.265	7200	3193.617	1100.846	641.2723
medium voc.	1656.683	1531.843	4845	654.3163	381.157
higher voc.	737.4627	681.8909	844.9767	1100	169.6697
university	1128.589	1043.544	1293.125	445.7424	2418

. di exp(_b[_cons]) * exp(_b[1.diag])
2068
. di exp(_b[_cons]) * exp(_b[2.meduc]) * exp(_b[2.feduc]) * exp(_b[2.diag])
7200
. di (681.8909 / 737.4627) / (1043.544 / 1128.589)
.99999973

Adding a diagonal

- The fit was not very good, so lets assume there is a third group: those that move one step up or down

. gen move_sym = abs(feduc-meduc) == 1

. tabdisp meduc feduc, cell(move_sym)

male	female education						
education	low	lower voc.	medium voc.	higher voc.	university		
low	0	1	0	0	0		
lower voc.	1	0	1	0	0		
medium voc.	0	1	0	1	0		
higher voc.	0	0	1	0	1		
university	0	0	0	1	0		

Fit the model

eq i.meduc i.m	feduc i.diag	g i.move_s	ym, irr nol	Log	
ssion			Number of	obs =	25
			LR chi2(14	1) =	34910.26
			Prob > ch	i2 =	0.0000
d = -1070.2624	4		Pseudo R2	=	0.9422
IRR	Std. Err.	Z	P> z	[95% Conf	. Interval]
3.338166	.1149113	35.02	0.000	3.120374	3.57116
2.707588	.0873711	30.87	0.000	2.541647	2.884363
1.230837	.0446596	5.72	0.000	1.146345	1.321555
2.929866	.0981173	32.10	0.000	2.743735	3.128624
.6559253	.0166208	-16.64	0.000	.6241449	.6893239
.9065449	.017194	-5.17	0.000	.8734639	.9408787
.3061911	.0083201	-43.56	0.000	.2903107	.3229403
.3186353	.010115	-36.03	0.000	.2994145	.33909
5.285556	.2107696	41.75	0.000	4.888186	5.715229
8.40447	.3063953	58.39	0.000	7.824899	9.026968
5.045011	.1533115	53.26	0.000	4.753299	5.354625
7.460018	.3595832	41.69	0.000	6.787514	8.199152
6.61995	.2616735	47.82	0.000	6.126443	7.153211
2 773769	0548879	51 56	0 000	2 66825	2 883461
391.2549	13.0152	179.45	0.000	366.5594	417.6142
I					
t(full)					
LL	df	р	BIC	I	D
1925.922	10	0	1820.672	.0590599	Э
	eq i.meduc i.: ssion I = -1070.2624 IRR 3.338166 2.707588 1.230837 2.929866 .6559253 .9065449 .3061911 .3186353 5.285556 8.40447 5.045011 7.460018 6.61995 2.773769 391.2549 c(full) LL 1925.922	eq i.meduc i.feduc i.diag ssion I = -1070.2624 IRR Std. Err. 3.338166 .1149113 2.707588 .0873711 1.230837 .0446596 2.929866 .0981173 .6559253 .0166208 .9065449 .017194 .3061911 .0083201 .3186353 .010115 5.285556 .2107696 8.40447 .3063953 5.045011 .1533115 7.460018 .3595832 6.61995 .2616735 2.773769 .0548879 391.2549 13.0152 c(full) LL df 1925.922 10	eq i.meduc i.feduc i.diag i.move_s ssion A = -1070.2624 IRR Std. Err. z 3.338166 .1149113 35.02 2.707588 .0873711 30.87 1.230837 .0446596 5.72 2.929866 .0981173 32.10 .6559253 .0166208 -16.64 .9065449 .017194 -5.17 .3061911 .0083201 -43.56 .3186353 .010115 -36.03 5.285556 .2107696 41.75 8.40447 .3063953 58.39 5.045011 .1533115 53.26 7.460018 .3595832 41.69 6.61995 .2616735 47.82 2.773769 .0548879 51.56 391.2549 13.0152 179.45 c(full) LL df p 1925.922 10 0	eq i.meduc i.feduc i.diag i.move_sym, irr nol ssion Number of LR chi2(14 Prob > ch: d = -1070.2624 Pseudo R2 IRR Std. Err. z $P> z $ 3.338166 .1149113 35.02 0.000 2.707588 .0873711 30.87 0.000 1.230837 .0446596 5.72 0.000 2.929866 .0981173 32.10 0.000 .6559253 .0166208 -16.64 0.000 .9065449 .017194 -5.17 0.000 .3061911 .0083201 -43.56 0.000 .3186353 .010115 -36.03 0.000 5.285556 .2107696 41.75 0.000 8.40447 .3063953 58.39 0.000 5.045011 .1533115 53.26 0.000 7.460018 .3595832 41.69 0.000 6.61995 .2616735 47.82 0.000 2.773769 .0548879 51.56 0.000 391.2549 13.0152 179.45 0.000 c(full) LL df p BIC 1925.922 10 0 1820.672	eq i.meduc i.feduc i.diag i.move_sym, irr nolog Saion Number of obs = LR chi2(14) = Prob > chi2 = Prob > chi2 = IRR Std. Err. z $P> z $ [95% Conf 3.338166 .1149113 35.02 0.000 3.120374 2.707588 .0873711 30.87 0.000 2.541647 1.230837 .0446596 5.72 0.000 1.146345 2.929866 .0981173 32.10 0.000 2.743735 .6559253 .0166208 -16.64 0.000 .6241449 .9065449 .017194 -5.17 0.000 .8734639 .3061911 .0083201 -43.56 0.000 .2903107 .3186353 .010115 -36.03 0.000 .2994145 5.285556 .2107696 41.75 0.000 4.888186 8.40447 .3063953 58.39 0.000 7.824899 5.045011 .1533115 53.26 0.000 4.753299 7.460018 .3595832 41.69 0.000 6.787514 6.61995 .2616735 47.82 0.000 6.126443 2.773769 .0548879 51.56 0.000 2.66825 391.2549 13.0152 179.45 0.000 366.5594 :(full) LL df p BIC 1 1925.922 10 0 1820.672 .0590593

interpret the coefficients

. predict mu, n

. tabdisp meduc feduc, c(mu)

male education	low	fe lower voc.	emale educatio medium voc.	n higher voc.	university
low lower voc. medium voc. higher voc.	2068 3622.747 1059.357 481.5709	711.8434 7200 1927.379 315.8745	354.6902 3284.183 4845 1210.932	119.7988 399.9083 899.7156 1100	124.6676 416.1613 337.5486 425.6224
university	1146.325	751.9033	1039.195	973.5774	2418

```
. di exp(_b[_cons]) * exp(_b[1.diag])
2068
. di exp(_b[_cons]) * exp(_b[2.meduc]) * exp(_b[1.move_sym])
3622.7474
. di exp(_b[_cons]) * exp(_b[3.meduc])
1059.3571
. di ( 315.8745 / 481.5709 ) / ( 751.9033 / 1146.325 )
1.0000002
```

Adding asymmetry

- descriptively we found that men were more likely to marry 'down' than 'up'
- lets incorporate that in our previous model
 - . gen move_asym = (meduc-feduc==1) + 2*(meduc-feduc==-1)
 - . tabdisp meduc feduc, cell(move_asym)

male education	low	fe lower voc.	male education medium voc.	n higher voc.	university
low	0	2	0	0	0
lower voc.	1	0	2	0	0
medium voc.	0	1	0	2	0
higher voc.	0	0	1	0	2
university	0	0	0	1	0

. label define m 1 "down" 2 "up"

. label value move_asym m

Fit the model

. poisson _freq i.meduc i.feduc i.diag i.move_asym, irr nolog

Poisson regres	sion			Number o LR chi20 Prob > o	of obs = (15) = chi2 =	25 35202.87 0.0000
Log likelihood	= -923.9553	7		Pseudo H	32 =	0.9501
_freq	IRR	Std. Err.	z	P> z	[95% Conf.	Interval]
meduc						
lower voc.	3.176795	.1089642	33.70	0.000	2.970249	3.397703
medium voc.	2.495323	.0816923	27.93	0.000	2.340238	2.660686
higher voc.	1.041134	.0389619	1.08	0.281	.9675032	1.120368
university	2.524221	.085721	27.27	0.000	2.36168	2.697948
feduc						
lower voc.	.6979436	.0180204	-13.93	0.000	.6635031	.7341717
medium voc.	1.104936	.0247197	4.46	0.000	1.057534	1.154464
higher voc.	.3500088	.0098091	-37.46	0.000	.3313019	.3697721
university	.3687206	.0121422	-30.30	0.000	.3456741	.3933037
diag						
low	5.169272	.2041837	41.59	0.000	4.784179	5.585364
lower voc.	8.117119	.2962936	57.37	0.000	7.556681	8.719122
medium voc.	4.392467	.1386041	46.90	0.000	4.129038	4.672703
higher voc.	7.545465	.3634368	41.96	0.000	6.865732	8.292495
university	6.493972	.2571544	47.25	0.000	6.009022	7.018061
move_asym						
down	3.057201	.0624071	54.74	0.000	2.9373	3.181997
up	2.082365	.0544486	28.05	0.000	1.978336	2.191864
_cons	400.0563	13.1268	182.60	0.000	375.1381	426.6297

. llingov, sat(full)

	LL	df	р	BIC	D
r1	1633.308	9	0	1538.583	.0581226

Interpret the coefficients

. predict mu, n

. tabdisp meduc feduc, c(mu)

male education	low	fe lower voc.	emale education medium voc.	n higher voc.	university
low	2068	581.431	442.0367	140.0232	147.509
lower voc.	3885.387	7200	2924.181	444.8251	468.6058
medium voc.	998.2699	2130.063	4845	727.585	368.0827
higher voc.	416.5121	290.702	1406.983	1100	319.8025
university	1009.83	704.8046	1115.798	1080.567	2418

. di exp(_b[_cons]) * exp(_b[1.diag])
2068
. di exp(_b[_cons]) * exp(_b[2.meduc]) * exp(_b[1.move_asym])
3885.3876
. di exp(_b[_cons]) * exp(_b[2.feduc]) * exp(_b[2.move_asym])
581.431

Unidiff models

- This table involves respondents that were born between 1900 and 1993, we may want to adjust for that
- We could do that as before
- Alternatively, we could model the table for the oldest cohort and say that the next cohort is the same except that all the parameters are *x* percent larger or smaller
- So the pattern remains the same, but the strength of the association increases or decreases by *x* percent.
- You need a user written package to estimate that: unidiff by Maurizio Pisati

Estimation of a unidiff model

<pre>. unidiff _freq, row(meduc) col(feduc) layer(coh) /// ></pre>									
	Name	Label					N.	of catego	ries
Row Column Layer	meduc feduc coh	male e female	education educatic	on				5 5 4	
Model specif	ication								
Layer effect R-C associat Additional v	: ion patte ariables:	mul ern: ful nor	.tiplicati .l interac 1e	ve tion					
Goodness-of-fit statistics									
Model	N	I df	 X2	p	G2	 Р	rG2	BIC	DI
Cond. indep. Null effect Multipl. eff	3716 3716 ect 3716	5 64 5 48 5 45	17778.3 254.6 239.5	0.00 0.00 0.00	15352.8 247.7 237.1	0.00 0.00 0.00	0.0 98.4 98.5	14679.3 -257.4 -236.4	26.1 2.6 2.5

Interpretation of a unidiff model

Phi parameters (layer scores)

coh	Raw	Scaled 1	Scaled 2
1900	2.7623	1.0000	0.5223
1925	2.6491	0.9590	0.5009
1950	2.7238	0.9861	0.5150
1975	2.4296	0.8796	0.4594

Psi parameters (R-C association scores)

male education	low	tion higher	univer		
lower voc. medium voc. higher voc. university	0.00 0.00 0.00 0.00 0.00	0.00 0.57 0.59 0.53 0.65	0.00 0.43 1.13 1.04 1.25	0.00 0.30 0.98 1.51 1.58	0.00 0.29 1.05 1.44 2.13

Interpretation of a unidiff model (2)

Total interaction effects (raw) - Additive form

coh and					
male		fema	le educa	tion	
education	low	lower	medium	higher	univer
1900					
low	0.00	0.00	0.00	0.00	0.00
lower voc.	0.00	1.59	1.19	0.82	0.81
medium voc.	0.00	1.64	3.11	2.70	2.90
higher voc.	0.00	1.46	2.87	4.16	3.97
university	0.00	1.80	3.45	4.36	5.87
1925					
low	0.00	0.00	0.00	0.00	0.00
lower voc.	0.00	1.52	1.14	0.78	0.78
medium voc.	0.00	1.58	2.99	2.59	2.78
higher voc.	0.00	1.40	2.75	3.99	3.81
university	0.00	1.73	3.31	4.18	5.63
1950					
low	0.00	0.00	0.00	0.00	0.00
lower voc.	0.00	1.56	1.17	0.81	0.80
medium voc.	0.00	1.62	3.07	2.66	2.86
higher voc.	0.00	1.44	2.83	4.10	3.91
university	0.00	1.78	3.40	4.30	5.79
1975					
low	0.00	0.00	0.00	0.00	0.00
lower voc.	0.00	1.40	1.05	0.72	0.71
medium voc.	0.00	1.44	2.74	2.38	2.55
higher voc.	0.00	1.29	2.52	3.66	3.49
university	0.00	1.58	3.03	3.83	5.17
•	1				

. di 2.4296*.65

1.57924

. di 1.58/1.80

.87777778

Summary

- Log-linear models describe and test patterns in cross-tabulations
- The simplest pattern is independence, the counts in cells are only determined by the margins
- Many of these models can be estimated using poisson
- With higher dimensional tables we can look if independence holds within sub-tables
- A more complex model is quasi-independence. There are two groups: one stays on the diagonal and one follows a independence pattern
- We can complicate the model even more, for example by adding additional diagonals, but there are many more ways of describing such tables.
- We can compare tables by saying that the basic structure is the same, but all the effects are \times % larger are smaller than the reference table.
- What I did not discuss are log-linear models for ordinal variables, common models for such tables are stereotyped ordered regression and the RCII (Row Column II) model.