Comparing observed and theoretical distributions

Maarten L. Buis

Institut für Soziologie
Eberhard Karls Universität Tübingen
www.maartenbuis.nl
Laplace distribution

. sysuse nlsw88, clear
(NLSW, 1988 extract)
. gen lnw = ln(wage)
. hangroot lnw, dist(laplace)
(bin=33, start=.00493961, width=.11219493)
Introduction

- Comparing the distribution of an observed variable with a theoretical distribution
 - For example: the residuals after a linear regression should follow a normal/Gaussian distributed
- Two parts
 - Part 1 focusses on:
 - univariate distributions
 - hanging and suspended rootograms
 - Part 2 focusses on:
 - marginal distributions
 - hanging and suspend rootograms and pp and qq-plots
. sysuse nlsw88, clear
 (NLSW, 1988 extract)
. gen ln_w = ln(wage)
. reg ln_w grade age ttl_exp tenure

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 2229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>203.980816</td>
<td>4</td>
<td>50.9952039</td>
<td>F(4, 2224) = 214.79</td>
</tr>
<tr>
<td>Residual</td>
<td>528.026987</td>
<td>2224</td>
<td>.237422206</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>732.007802</td>
<td>2228</td>
<td>.328549283</td>
<td>Adj R-squared = 0.2774</td>
</tr>
</tbody>
</table>

| ln_w | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----------|------------|-----------|-------|-------|---------------------|
| grade | .0798009 | .0041795 | 19.09 | 0.000 | .0716048 -.087997 |
| age | -.009702 | .0034036 | -2.85 | 0.004 | -.0163765 -.0030274 |
| ttl_exp | .0312377 | .0027926 | 11.19 | 0.000 | .0257613 .0367141 |
| tenure | .0121393 | .0022939 | 5.29 | 0.000 | .0076408 .0166378 |
| _cons | .7426107 | .1447075 | 5.13 | 0.000 | .4588348 1.026387 |

. predict resid, resid
 (17 missing values generated)
. hist resid, normal freq
 (bin=33, start=-2.1347053, width=.13879342)
histogram with normal curve

Comparing observed and theoretical distributions
hanging rootogram, Tukey 1972 and 1977

```
.hangroot resid
(bin=33, start=-2.1347053, width=.13879342)
```
Confidence intervals

- For a histogram the variable is broken up in a number of bins.
- The height of a bar/spike is the number of observations falling in a bin.
- One can think of this number of observations as following a multinomial distribution.
- Confidence intervals for these counts are computed using Goodman’s (1965) approximation of the simultaneous confidence interval.
- For (hanging) rootograms these confidence intervals are transformed to the square root scale.
- These confidence intervals do not take into account that:
 - the parameters of the theoretical curve are often estimated
 - and that nearby bins are often similar.
Confidence intervals

```
.hangroot resid, ci
(bin=33, start=-2.1347053, width=.13879342)
```
Simulations

- We know that the residuals should follow a normal distribution with mean 0 and standard deviation $e(\text{rmse})$.
- We can compare the observed distribution with several draws from this theoretical distribution.
- The simulated distributions capture the variability one can expect if our model is true.
Simulations

. forvalues i = 1/20 {
 2. qui gen sim`i` = rnormal(0,`e(rmse)`) if e(sample)
 3. }

. hangroot resid, sims(sim*) jitter(5)
 (bin=34, start=-2.1347053, width=.13471126)
Suspended rootogram

\texttt{. hangroot resid, ci susp theoropt(lpattern(-))}
\texttt{(bin=33, start=-2.1347053, width=.13879342)}
Suspended rootogram

.hangroot resid, ci susp notheor
(bin=33, start=-2.1347053, width=.13879342)
Aside: Where did that bi-modality come from?

```
qui reg ln_w grade age ttl_exp tenure union
.predict resid2, resid
(380 missing values generated)
.hangroot resid2, ci
(bin=32, start=-1.7272859, width=.10744561)
```
Where did the parameters come from?

- By default `hangroot` tries to estimate those parameters.
- One can directly specify the parameters using the `par()` option. In this case one would type:
  ```
  hangroot resid, par(0 `e(rmse)')
  ```
- One can first use an estimation command to estimate the parameters. In this case one would type:
  ```
  regres resid
  ```
  ```
  hangroot
  ```
Is this just for the normal distribution?

One can specify other distributions with the `dist()` option.

<table>
<thead>
<tr>
<th>Normal / Gaussian</th>
<th>Singh-Maddala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lognormal</td>
<td>Generalized Beta II</td>
</tr>
<tr>
<td>Logistic</td>
<td>Generalized extreme value</td>
</tr>
<tr>
<td>Weibull</td>
<td>Exponential</td>
</tr>
<tr>
<td>Chi square</td>
<td>Laplace</td>
</tr>
<tr>
<td>Gamma</td>
<td>Uniform</td>
</tr>
<tr>
<td>Gumbel</td>
<td>Geometric</td>
</tr>
<tr>
<td>Inverse gamma</td>
<td>Poisson</td>
</tr>
<tr>
<td>Wald / inverse Gaussian</td>
<td>Zero inflated Poisson</td>
</tr>
<tr>
<td>Beta</td>
<td>Negative binomial I</td>
</tr>
<tr>
<td>Pareto</td>
<td>Negative binomial II</td>
</tr>
<tr>
<td>Fisk / log-logistic</td>
<td>Zero inflated negative binomial</td>
</tr>
<tr>
<td>Dagum</td>
<td></td>
</tr>
</tbody>
</table>
Other examples: a beta distribution

. use "\home\citybudget", clear
(Spending on different categories by Dutch cities in 2005)
. hangroot governing, dist(bbeta)
(bin=19, start=.02759536, width=.01572787)
Other examples: a Poisson distribution

```
. use "\home\cavalry", clear
(horsekick deaths in 14 Prussian cavalry units 1875-1894)
. hangroot deaths [fw=freq], ci dist(poisson)
(start=0, width=1)
```
Other examples: displaying the results of a simulation

```
. program drop _all
. program define sim, rclass
  1.   drop _all
  2.   set obs 250
  3.   gen x1 = rnormal()
  4.   gen x2 = rnormal()
  5.   gen x3 = rnormal()
  6.   gen y = runiform() < invlogit(-2 + x1)
  7.   logit y x1 x2 x3
  8.   test x2=x3=0
  9.   return scalar p_25  = r(p)
10.  return scalar chi2_25 = r(chi2)
11.  logit y x1 x2 x3 in 1/25
12.  test x2=x3=0
13.  return scalar p_25  = r(p)
14.  return scalar chi2_25 = r(chi2)
15.
. end

. set seed 123456
.
. simulate chi2_250=r(chi2_250) p_250=r(p_250) ///
  > chi2_25 =r(chi2_25) p_25 =r(p_25) , ///
  > reps(1000) nodots : sim
```

Maarten L. Buis
Comparing observed and theoretical distributions
Other examples: displaying the results of a simulation

```
. hangroot chi2_25, dist(chi2) par(2) name(chi, replace) ci ///
>     title("distribution of Wald statistics") ///
>     "compared to a \{&chi}\{sup:2\}(2) distribution") ///
>     xtitle(Wald statistics) ///
>     ytitle("frequency (root scale)") ///
>     ylab(-2 "-4" 0 "0" 2 "4" 4 "16" 6 "36" 8 "64") ///
>     (bin=29, start=.00226492, width=.18900082)
```

```
. hangroot p_25 , dist(uniform) par(0 1) ///
>     susp notheor ci name(p, replace) ///
>     title("deviations of the distribution of p-values") ///
>     "from the uniform distribution") ///
>     xtitle("p-value") ytitle("residual (root scale)") ///
>     ylab(-4 "-16" -3 "-9" -2 "-4" -1 "-1" 0 0" 1 "1") ///
>     (bin=29, start=.06446426, width=.03222082)
```
Other examples: displaying the results of a simulation

```
. hangroot chi2_250, dist(chi2) par(2) name(chi2, replace) ci 
    ///
    > title("distribution of Wald statistics" 
    > "compared to a \{&chi}{sup:2}\(2\) distribution") ///
    > xtitle("Wald statistics") ///
    > ytitle("frequency \{root scale\}") ///
    > ylab(-5 "-25" 0 "0" 5 "25" 10 "100" 15 "225") ///
    (bin=29, start=.00158109, width=.41837189)
.
. hangroot p_250, dist(uniform) par(0 1) 
    ///
    > susp notheor ci name(p2, replace) ///
    > title("deviations of the distribution of p-values" 
    > "from the uniform distribution") ///
    > xtitle("p-value") ytitle("residual \{root scale\}") ///
    > ylab(-1 0 1) ///
    (bin=29, start=.00231769, width=.03437559)
```
Other examples: displaying the results of a simulation

- Deviations of the distribution of p-values from the uniform distribution
- Distribution of Wald statistics compared to a $\chi^2(2)$ distribution

Maarten L. Buis
Comparing observed and theoretical distributions
Other examples: displaying the results of a simulation

- Deviations of the distribution of p-values from the uniform distribution.
- Distribution of Wald statistics compared to a $\chi^2(2)$ distribution.

Maarten L. Buis
Comparing observed and theoretical distributions
marginal distribution

- In linear regression the residuals have a known theoretical distribution: normal/Gaussian distribution.
- This is typically not the case in other models like Poisson regression or beta regression.
- The theoretical marginal distribution of the dependent variable is known: It is a mixture distribution where each observation gets its own parameters.
Marginal distribution is a mixture distribution

```
. set seed 1234
. drop _all
. set obs 1000
obs was 0, now 1000
. gen byte x = _n <= 250
. gen y = -3 + 3*x + rnormal()
```
Marginal distribution is a mixture distribution

```
  . hangroot y, dist(normal) ci name(wrong, replace)
  (bin=29, start=-6.1794977, width=.30656038)

  . qui reg y x
  . hangroot, ci name(right, replace)
  (bin=29, start=-6.1794977, width=.30656038)
```
comparing fit of count models (Poisson)

```
. use "home\couart2", clear
(Academic Biochemists / S Long)
. gen lnment = ln(ment)
(90 missing values generated)
. qui poisson art fem mar kid5 phd lnment
. predict lambda, n
(90 missing values generated)
. forvalues i=1/20 {
  2.     qui gen sim`i´ = rpoisson(lambda)
  3. }
. hangroot , sims(sim*) jitter(5) susp notheor ///>
>         title(poisson) name(poiss, replace) ///>
>         legend(off)
(start=0, width=1)

also see: Hilbe 2010
```
comparing fit of count models (zero inflated Poisson)

. use "home\couart2", clear
(Academic Biochemists / S Long)
. gen lnment = ln(ment)
(90 missing values generated)
. qui zip art fem mar kid5 phd lnment, inflate(_cons)
. predict lambda, xb
(90 missing values generated)
. replace lambda = exp(lambda)
(825 real changes made)
. predict pr, pr
. forvalues i=1/20 {
 2. qui gen sim`i´ = cond(runiform()< pr, 0, rpoisson(lambda))
 3. }
. hangroot, sims(sim*) jitter(5) susp notheor ///
> title(zip) name(zip, replace) ///
> legend(off)
(start=0, width=1)
comparing fit of count models (negative binomial)

```
. use "\home\couart2", clear
   (Academic Biochemists / S Long)
. gen lnment = ln(ment)
   (90 missing values generated)
. qui nbreg art fem mar kid5 phd lnment
. predict xb, xb
   (90 missing values generated)
. tempname a ia
. scalar `a' = e(alpha)
. scalar `ia' = 1/`a'
. gen exb = exp(xb)
   (90 missing values generated)
. gen xg = .
   (915 missing values generated)
. gen xbg = .
   (915 missing values generated)
. forvalues i = 1/20 {
   2.   qui replace xg = rgamma(`ia', `a')
   3.   qui replace xbg = exb*xg
   4.   qui generate sim`i' = rpoisson(xbg)
   5. }
. hangroot, sims(sim*) jitter(5) susp notheor ///
   >   title(neg. binomial) ///
   >   legend(off) name(nb, replace)
   (start=0, width=1)
```

also see: Hilbe 2010
comparing fit of count models (zero inflated negative binomial)

. use "\home\couart2", clear
(Academic Biochemists / S Long)
. gen lnment = ln(ment)
(90 missing values generated)
. qui zinb art fem mar kid5 phd lnment, inflate(_cons)
. predict xb, xb
(90 missing values generated)
. predict pr, pr
. tempname a ia
. scalar `a` = exp([lnalpha]_b[_cons])
. scalar `ia` = 1/`a``
. gen exb = exp(xb)
(90 missing values generated)
. gen xg = .
(915 missing values generated)
. gen xbg = .
(915 missing values generated)
. forvalues i = 1/20 {
 2. qui replace xg = rgamma(`ia`, `a`)
 3. qui replace xbg = exb*xg
 4. qui generate sim`i` = cond(runiform()< pr, 0, rpoisson(xbg))
 5. }
. hangroot, sims(sim*) jitter(5) susp notheor ///>
> title(zero infl. neg. binomial) ///>
> name(znb, replace) legend(off)
(start=0, width=1)
comparing fit of count models

- Poisson
- ZIP
- Negative binomial
- Zero-inflated negative binomial

Maarten L. Buis
Comparing observed and theoretical distributions
. use "\home\citybudget", clear
(Spending on different categories by Dutch cities in 2005)
. qui betafit governing, mu(noleft minorityleft popdens houseval)
.
. predict a, alpha
(1 missing value generated)
. predict b, beta
(1 missing value generated)
. forvalues i = 1/20 {
 2. qui gen sim`i` = rbeta(a,b)
 3. }
.
. hangroot, sims(sim*) jitter(5)
(bin=20, start=.00440596, width=.01610095)
Univariate distributions
Marginal distributions

Beta regression

Comparing observed and theoretical distributions
Cumulative density function

Simulating observed and theoretical distributions
PP-plot

theoretical Pr(Y ≤ y)

Empirical Pr(Y ≤ y) = i/(N+1)

simulations observed
reference

. margdistfit, pp
QQ-plot

```
margdistfit, qq
```

Comparing observed and theoretical distributions
Conclusion

- Deviations from the theoretical distribution are best shown as deviations from a straight line rather than a curve.
- Hanging and suspended rootograms are easy because many have been trained to look at histograms, but they require binning.
- QQ and PP-plots allow you to see the raw data but many have not been trained to interpret them.
- One can derive the theoretical distribution implied by a regression type model by treating that distribution as a mixture distribution where each observation gets its own parameters.
- One can get a feel for the amount of ‘legitimate’ variability by either plotting confidence intervals or random draws from the theoretical distribution.
Goodman, Leo A.
On Simultaneous Confidence Intervals for Multinomial Proportions.

Hilbe, Joseph M.
Creating synthetic discrete-response regression models

Tukey, John W.
Some Graphic and Semigraphic Displays.

Tukey, John W.
Exploratory Data Analysis,
Addison-Wesley, 1977.