The \textit{uniform()} function generates random draws from a uniform distribution between zero and one ([P functions]). One of its many uses is creating random draws from a discrete distribution where each possible value has a known probability.

A uniform distribution means that each number between zero and one is equally likely to be drawn. So the probability that a random draw from a uniform distribution has a value less than .50 is 50\%, the probability that such a random draw has a value less than .60 is 60\%, etc. The example below shows how this can be used to create a random variable, where the probability of drawing a 1 is 60\% and the probability of drawing a 0 40\%. In the first line random draws from the uniform distribution are stored in the variable \texttt{rand}. Each case has a 60\% probability of getting a value of \texttt{rand} that is less than .60 and a 40\% probability that it receives a value more than .60. The second line uses this fact to create draws from the desired distribution. Using the \texttt{cond()} function (Kantor and Cox 2005) it creates a new variable, \texttt{draw}, which has the value 1 if \texttt{rand} is less than .6 and 0 if \texttt{rand} has a value more than .60.

\begin{verbatim}
gen rand = uniform()
gen draw = cond(rand < .6, 1, 0)
\end{verbatim}

The same result can be achieved with one line of code by using the fact that in Stata a true statement is represented by 1 and a false statement by 0 (Cox 2005). If Stata is given the the following command, it will for each case draw a random number from the uniform distribution, look if that number is less than .6, and if that is true it will give that case the value 1 (true) on the variable \texttt{draw}, and otherwise it will give that case the value 0 (false) on that variable.

\begin{verbatim}
gen draw = uniform() < .6
\end{verbatim}

The probability does not have to be constant. For instance, in the example below the probability of drawing a 1 depends on the variable \texttt{x}. It simulates data for a logistic regression with a constant of -1 and an effect of \texttt{x} of 1. In this example the variable \texttt{x} consists of draws from a standard normal distribution.

\begin{verbatim}
gen x = invnorm(uniform())
gen draw = uniform() < invlogit(-1 + x)
\end{verbatim}
Stata tip 48

Nor is this method limited to random variables with only two values. The example below draws from a distribution where the value 1 has a probability of 30%, the value 2 a probability of 45%, and the level 3 a probability of 25%.

```stata
gen rand = uniform()
gen draw = cond(rand < .3, 1, /*
   */ cond(rand < .75, 2, 3 ))
```

This same principle can be used to create draws from a binomial distribution. Remember that a binomial distribution with parameters \(n \) and \(p \) is the distribution of the number of 'successes' out of \(n \) trials when the probability of success in each trial is \(p \). One way of sampling from this distribution is to literally do just that, i.e. draw \(n \) numbers from a uniform distribution, declare each number a success if it is less than \(p \), and then count the number of successes (Devroye 1986, p. 524). In this case it is convenient to use Mata and the Mata equivalent of \(\text{uniform()} \), \(\text{uniform(r,c)} \), which creates an \(r \) by \(c \) matrix filled with random draws from the uniform distribution. The example below creates a new variable `draw` containing draws from a binomial\((100,.3)\) distribution:

```mata
mata:
n = 100
p = .3
draw = J(st_nobs(),1,.) // matrix to store results
for(i=1; i<=rows(draw); i++) { // loop over observations
   trials = uniform(1,n) // create n trials
   successes = trials :< p // success = 1 failure = 0
   draw[i,1] = rowsum(successes) // count the successes
}
idx = st_addvar("int", "draw")
st_store(.,idx,draw) // store the variable
end
```

References

