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Introduction 

The purpose of using proportions is to make observations comparable by standardizing 

them. For example, we may look at the expenditure of municipalities on law enforcement. In this 

case it makes sense to compare the proportion of the total budget spend on law enforcement, in 

order to more meaningfully compare large and small cities. Proportions can enter an analysis as 

dependent or independent variables.  An analysis may involve a single proportion – for example, 

the proportion of a municipal budget spend on law enforcement – or multiple proportions – for 

example, the proportions of a municipal budget spend on law enforcement, urban planning, 

social work, and other.     

A single proportion as a dependent variable is hard to analyze using linear regression, as 

the upper and lower bound of the proportion will result in non-linearity of effects. Moreover, 

these bounds will typically result in heteroscedasticity. There are two main strategies for 

modeling proportions. The first strategy uses Maximum Likelihood to model the proportion as a 

beta distribution, whereby the conditional mean and variance depends on the explanatory 

variables using link functions, like the logit link function. The second strategy dispenses with the 

necessity to specify a distribution for the proportion, by maximizing the quasi-likelihood, and only 

model the conditional mean using a link function.  

Multiple proportions that add to one as dependent variables have the additional challenge 

that these variables are mutually dependent; if you spent an extra minute a day watching 

television, then that minute cannot be spent on other activities. So the proportions tend to be 

negatively correlated. Both solutions to single proportion problem can be generalized to the 

multiple proportion case: The multivariate generalization of the beta distribution is the Dirichlet 

distribution, and one can use quasi-likelihood with a multinomial logit link function to let the 

conditional means depend on explanatory variables. Dirichlet regression implies the negative 
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correlation between the dependent variables under independence, while quasi-likelihood 

models tread the correlation as a nuisance parameter. So both classes of models may work well 

when one is interested in the influence of other explanatory variables. For example, how does 

the political orientation of the city council influence the proportions of the budget spent on 

various categories. However, these two classes of models are less suited when one is interested 

in the correlation between the proportions. For example, can a city spend a smaller part of his 

budget on policing if a city spends a larger part of his budget on social projects. A common 

strategy for such problems is to use a multivariate normal distribution on a transformation of the 

proportions. 

The mutual dependence of proportions also poses a challenge when proportions are added 

as explanatory variables. Effects of explanatory variables are often interpreted as the expected 

change in the explained variable for a unit change in the explanatory variable while keeping all 

other variables constant. This latter part is logically impossible when adding multiple proportions 

as explanatory variables. 

               

__________________________________________________________________________________ 

 

Proportions 

The purpose of a proportion is to make observations comparable, even when there are wild 

differences in their base. For example, ten employees participating in a firm’s pension plan means 

something very different when the firm has ten employees or a thousand employees. To make 

these firms comparable the number of employees participating is divided by the total number of 

employees to create a proportion. Such a proportion has a logical lower bound of zero, as it is 

impossible that less than nobody participates in the pension plan. Similarly, there is the logical 

upper bound of one, as it is impossible that more than everybody participates. Moreover, for a 

set of mutually exclusive and exhaustive categories –  for example, the firm’s pension plan, any 

other pension plan, no pension plan – the proportions in each of these categories have to add to 

one.  

Sometimes variables are explicitly defined as proportions, but sometimes that is more 

implicit. For example, consider the following survey question from the General Social Survey: “On 

the average day, about how many hours do you personally watch television?”. The variable that 

results from such a survey question will have many of the same properties and challenges as a 

proportion. It would have a lower bound (zero hours per day) and an upper bound (twenty-four 

hours per day). If we have a set of mutually exclusive and exhaustive activities, then the number 

of hours per day spent on these activities would have to add up to twenty-four. 
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Proportions often happen at an aggregate level, for example the proportion of non-western 

immigrants in a neighborhood. When analyzing these proportions, one has to be careful to 

remain on that aggregate level. If one finds a positive association between the number of cheap 

houses in a neighborhood and the proportion of non-western immigrants, then it is very tempting 

to conclude that non-western immigrants are attracted to cheap houses, that is, make a 

statement on the individual level rather than the neighborhood level. This would be an ecological 

fallacy.  (Robinson, 1950) Association on the individual level can be very different from the 

association on the aggregate level, even with a different sign. If one is interested in the lower 

level effects, then the best solution is to get lower level data. If that is not an option, then one 

can look into ecological inference (King, 1997; King, Tanner, & Rosen, 2004). 

 

Explaining a single proportion 

A proportion is a continuous variable. So it makes sense to start with what for many 

researchers is the default method for explaining continuous variables: linear regression. 

However, in that case two problems are likely to occur. First, the lower and upper bound are 

likely to impose a pattern on the residuals, leading to heteroscedasticity. Second, linear 

regression does not enforce the lower and upper bound, making it possible to get impossible 

predictions, that is, predicted proportions less than zero or more than one.  

These problems are illustrated using an example analysis of 2017 American Time Use 

Survey (U.S. Bureau of Labor Statistics 2017). Respondents are asked to report the activities they 

performed in the previous day. The sample is restricted to respondents who work and were asked 

to report on a non-holiday weekday. In this example analysis we are trying to explain the minutes 

spent on unpaid household work (cleaning, cooking, child care, care for adults in the household, 

etc.). This variable has a lower bound of zero, and upper bound of 24×60=1,440 minutes, and 

when one adds the times spent on all the activities, then that adds up to 1,440 for each 

respondent. So even though it is not explicitly called a proportion, it has all the main 

characteristics of a proportion. This variable is explained with a linear regression model with the 

variables usual hours per week doing paid work, the respondents sex and marital status, the work 

status of the partner, age and age squared. These results are not shown, but instead a plot of the 

residuals versus the fitted values is shown in Figure 1, as this is a clear illustration of the problems 

that often occur when using linear regression on a proportion.  

Ideally, there should be no pattern in this graph. This is clearly not the case: There is a clear 

downward sloping lower bound visible. This can be explained by the fact that no observations 

can have a negative value on the number of minutes spent on household work, so if one predicts 

10 minutes spent on household work, then the residual cannot be less than -10. Figure 1 also 

shows heteroscedasticity; the variance of the residuals is much larger at higher predicted values. 
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If the predicted values would have started to approach the maximum, the variance would have 

decreased again. This heteroscedasticity is a consequence of these lower and upper bounds. The 

second problem can be seen by looking at the predicted values: some of them are negative, which 

is impossible.   

 
Analysis of proportions, Figure 1 Residual versus predicted value plot for a linear regression 

 

Source: Created by author for this entry using data from (U.S. Bureau of Labor Statistics 

2017). 

 

Maximum Likelihood 

One common way of analyzing proportions is to do a regression analysis while assuming 

that the proportion follows a beta distribution. The beta distribution is a fairly flexible distribution 

for variables bounded between zero and one. It can be parameterized in terms of a location 

parameter 𝜇 and a scale parameter 𝜑. The probability density function is: 

𝑓(𝑦|𝜇, 𝜑) =  
Γ(𝜑)

Γ(𝜇𝜑)Γ((1 − 𝜇)𝜑)
𝑦𝜇𝜑−1(1 − 𝑦)(1−𝜇)𝜑−1 

The Γ(⋅) is the gamma function, which can be thought of as a generalization of the factorial 

function for non-integers. The mean of this distribution is the parameter 𝜇, and must thus remain 

between zero and one. The parameter 𝜑 is one of the determinants of the variance, and must be 
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larger than 0. The variance of the beta distribution is 𝜇(1 − 𝜇)
1

1+𝜑
 and consequently the 

standard deviation is √𝜇(1 − 𝜇)
1

1+𝜑
. This means that the variance is both a function of the 

predicted mean and the parameter 𝜑. The variance decreases as 𝜑 increases. Also, the variance 

increases as the predicted mean gets closer to .5 and decreases as mean approaches either the 

upper or lower bound. The different shapes possible with a beta distribution are illustrated in 

Figure 2. This figure also shows how the standard deviation (𝜎) depends on both the 𝜇 and the 

𝜑. 

 
Analysis of Proportions, Figure 2 Various shapes for the beta distribution 

 

Source: Created by author for this entry. 

 

A regression type model is created by replacing the parameter 𝜇 by a function of the 

explanatory variables and their effects like in linear regression, the so called linear predictor. To 

make sure that the predicted means respect the lower and upper bound, the linear predictor is 

usually transformed with a link function. (Ferrari & Cribari-Neto, 2004; Kieschnick & McCullough, 

2003; Paolino, 2001; Smithson & Verkuilen, 2006). Common choices for the link function are the 

logit and the probit, but others are possible as well (Simas, Barreto-Souza, & Rocha, 2010).  

In this model the variance also changes when the explanatory variables change, as the 
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variance is a function of that mean. The variance will decline as the mean approaches either the 

upper or lower bound. This is in line with the pattern of heteroscedasticity commonly found in 

proportions. One can further improve the model for the heteroscedasticity by also replacing 𝜑 

with a function of explanatory variables (Smithson & Verkuilen, 2006), typically using a log link 

function as 𝜑 must be larger than 0. This is often a advisable because if one does not do that the 

model for 𝜇 tries to do two things: model how the conditional mean depends on the explanatory 

variables and how the conditional variance depends on the explanatory variables. If there is some 

heteroscedasticity that is not captured by the variance function of the beta distribution, then 

that will introduce bias in the estimates. (Meaney & Moineddin, 2014) 

 

 A more formal representation of this model is given in equations (1) till (3). Equation (1) 

specifies that some dependent variable 𝑦𝑖, which is bounded between 0 and 1, follows a beta 

distribution.  However, the subscript i for the parameters indicate that the parameters differ from 

observation to observation. Equation (2) determines how the parameter 𝜇𝑖 depends the 

explanatory variables 𝑥𝑖, and equation (3) determines how the parameter 𝜑𝑖 depends on the 

explanatory variables 𝑧𝑖. The functions 𝑓(∙) and 𝑔(∙) are link functions. The argument of the 

function 𝑓(∙) is bounded between zero and one and the argument of the function 𝑔(∙) is bounded 

to be larger than zero. Both functions will turn its argument into a number that can take any value 

on the real number line. A typical example of 𝑓(∙) would be the logit link function 𝑓(𝜇𝑖) =

ln (
𝜇𝑖

1−𝜇𝑖
), while a typical example of 𝑔(∙) would be the log link function 𝑔(𝜑𝑖) = ln (𝜑𝑖). Common 

link functions for the mean are given in Table 1. The sets of explanatory variables 𝑥𝑖  and 𝑧𝑖, could 

be the same variables, partially the same, or completely different. 

𝑦𝑖~𝐵𝑒𝑡𝑎(𝜇𝑖, 𝜑𝑖) (1) 

𝑓(𝜇𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯+ 𝛽𝑘𝑥𝑘𝑖 = 𝑥𝑖𝛽 (2) 

𝑔(𝜑𝑖) = 𝜃0 + 𝜃1𝑧1𝑖 + 𝜃2𝑧2𝑖 +⋯+ 𝜃𝑘𝑧𝑘𝑖 = 𝑧𝑖𝜃 (3) 

One of the nice properties of the logit link function is that the exponentiated coefficients 

can be interpreted directly. Continuing the example, an exponentiated coefficients shows the 

factor by which the relative proportion of time spent on doing household work changes for a unit 

change in the explanatory variable. The relative proportion is the proportion of time spent on 

household work divided by one minus the proportion of time spent on household work. In other 

words, the proportion of time spent on household work divided by the proportion of time spent 

on other things. As the total is the same for both the numerator and the denominator, it drops 

out, and one can also interpret it as the expected number of minutes doing household work for 

every minute doing something else. 

Regardless of the link function one can interpret the model by computing marginal effects 
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after estimating the model. A marginal effect tells us by how much the mean changes for a unit 

change in an explanatory variable, that is, it is a slope or first derivative. The formula for the 

marginal effect depends on the link function. To get the marginal effect (𝜕𝜇 𝜕𝑥⁄ ), one can use the 

chain rule: 𝜕𝜇 𝜕𝑥⁄ = 𝜕𝜇 𝜕𝑥𝛽⁄ × 𝜕𝑥𝛽 𝜕𝑥⁄  . The first part is given in the last column of Table 1. If the 

explanatory variable is added linearly, then the latter part is just 𝛽. One complication is that the 

marginal effect depends on the values on all explanatory variables, so each observation in the 

data will have its own marginal effect. In order to still be able to report “the” marginal effect as 

one number one typically computes the marginal effect for each observation in the data and 

report the mean of these marginal effect. This is typically referred to as the average marginal 

effect. Another complication is that the slope at one point on the regression line is not the best 

description of the effect of a categorical variable. Instead one typically reports discrete 

differences. Say the categorical explanatory variable is the respondent’s biological sex, then one 

would compute for each observation the predicted proportions assuming that person was male, 

and the predicted proportion assuming that person was female. The difference between these 

two is the effect of being female, which differs from person to person depending on the other 

explanatory variables. So to report one effect, one reports the average of these effects.  

 
Table 1 Common link functions for the mean in beta regression, the corresponding inverse link function, and the first 

dervative of the inverse link function with respect xi 

Link function  

name 

Link function 

𝑔(𝜇𝑖) = 𝑥𝑖𝛽 

Inverse link function 

𝜇𝑖 = 𝑔
−1(𝑥𝑖𝛽) 

First derivative 

𝜕𝜇𝑖 𝜕𝑥𝑖𝛽⁄  

Logit ln (
𝜇𝑖

1 − 𝜇𝑖
) 𝑒𝑥𝑖𝛽

1 + 𝑒𝑥𝑖𝛽
 

𝜇𝑖(1 − 𝜇𝑖) 

Probit Φ−1(𝜇𝑖) Φ(𝑥𝑖𝛽) 𝜙(𝑥𝑖𝛽) 

Log-log −ln (−ln (𝜇𝑖)) exp (−exp (−𝑥𝑖𝛽)) −𝜇𝑖ln (𝜇𝑖) 

Complementary 

log-log 

ln (−ln (1 − 𝜇𝑖)) 1 − exp (−exp (𝑥𝑖𝛽)) (𝜇𝑖 − 1)ln (1 − 𝜇𝑖) 

Φ−1(∙) is the inverse cumulative distribution function or quantile function of the standard 

normal distribution, Φ(∙) is the cumulative distribution function of the standard normal 

distribution, and 𝜙(∙) is the probability density function of the standard normal 

distribution. 

 

Just as one can look at the marginal effect on the average proportion, one can also look at 

the marginal effect on the standard deviation. The standard deviation of the beta distribution 
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was √𝜇𝑖(1 − 𝜇𝑖)
1

1+𝜑𝑖
, so to get the effect of an explanatory variable on the standard deviation 

one computes the first derivative of that function with respect to that explanatory variable. In 

general, the marginal effect on the standard deviation is then: 
1

2𝑠𝑑𝑖(1+𝜑𝑖)
[(1 − 2𝜇𝑖)

𝜕𝜇𝑖

𝜕𝑥
+

𝜇𝑖(1−𝜇𝑖)

1+𝜑𝑖

𝜕𝜑𝑖

𝜕𝑥
], where 

𝜕𝜇𝑖

𝜕𝑥
 and 

𝜕𝜑𝑖

𝜕𝑥
 depend on the link functions chosen for the mean and the scale 

parameter. For example, if we use the logit link function for the mean and the log link function 

for the scale parameter, then the marginal effect of an explanatory variable on the standard 

deviation is  
𝑣𝑎𝑟𝑖

2𝑠𝑑𝑖
[(1 − 2𝜇𝑖)𝛽 −

𝜃

(1+𝜑𝑖)𝑧𝑖𝜃
], where 𝑣𝑎𝑟𝑖 is the predicted variance for observation i, 

and 𝑠𝑑𝑖  is the square root of that predicted variance. However, most statistical packages have 

dedicated commands for computing marginal effects, like the margins command in Stata, the 

margins macro in SAS, or the margins() library in R. So, usually one uses those commands 

rather than deriving these formulas and filling them out by hand. 

Table 2 shows an example analysis of the time spent on household work to illustrate how 

to interpret the results from such a model. The dependent variable is the proportion of time in a 

day spent on doing household work. It is the number of minutes spent doing household work 

divided by 1,440 (the number of minutes in a day). The model uses the logit link for the mean 

function and the log link for the scale function. This means that the exponentiated parameters 

can be interpreted directly. For the mean equation The constant is the relative proportion for the 

group that has the value zero on all explanatory variables.  The usual hours per week worked was 

centered at 40, so the constant refers to men who work 40 hours per week. This group is expected 

to have spent 0.08 minutes on household work for every minute they spent on other things. 

Working an hour per week longer decreases the minutes spent on household work per minute 

spent on other things by a factor of 0.99 or (0.99-1)×100%= - 1%. Being a female increases the 

relative proportion 71%. 

The third column in Table 2 shows the average marginal effects on the time spent doing 

household work. In this case it makes sense to multiply the marginal effects by 1,440 to get the 

marginal effects in terms of minutes per day. So working an hour per week more reduces the 

time spent on household work by 1.3 minutes per day, and women tend to do 67 minutes per 

day more household work than men.  

The exponentiated parameters for the 𝜑 equation represent the factor by which this 

parameter changes for a unit change in the explanatory variable. So for a men working 40 hours 

a week predicts a 𝜑 of 6, and this 𝜑 increases by 1% for every hour per week a person works 

longer. A larger 𝜑 means a lower standard deviation, so the group of people working long hours 

are more homogenous (smaller standard deviation) than the group of people working short 

hours. The 𝜑 also increases by 1% if someone is a female, but this change is far from significant. 

The marginal effect on the standard deviation (𝜎) is shown in the last column. The standard 
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deviation decreases by one minute for every hour per week a person works longer. This is due to 

two effects: First, the negative effect of working hours on the mean proportion spent on 

household work, means that people working long hours will be closer to the lower bound, and 

this will reduce the standard deviation. Second the positive effect of working hours on 𝜑 will 

reduce that variance even more for people with longer working hours. The standard deviation is 

substantially bigger for women than for men, but this difference in standard deviation is almost 

entirely driven by the difference in mean. 

 
Table 2 Results form a beta regression explaining the proportion of a day spent on household work 

  exp (𝛽) Marginal effecta 

(in minutes per day) 

  𝜇 𝜑 𝜇 σ 

Usual hours per  0.99*** 1.01* -1.30*** -1.12*** 

week work  (0.00) (0.01) (0.00) (0.00) 

Respondent’s male (reference) (reference) (reference) (reference) 

Gender      

 female 1.71*** 1.01 67.18*** 33.47*** 

  (0.00) (0.88) (0.00) (0.00) 

Constant  0.08*** 6.10***   

  (0.00) (0.00)   

Observations  2784    

Source: Created by author for this entry using data from (U.S. Bureau of Labor Statistics 
2017). 

p-values in parentheses 

* p < 0.05, ** p < 0.01, *** p < 0.001 

a discrete changes are used for categorical variables 

 

A key issue with beta regression is that it is only defined for values between but not 

including zero and one. So this model cannot handle proportions of exactly zero or one. In the 

example above, there are a substantial number of respondents that did not do any household 

work the previous day. The example actually used a transformed proportion suggested by 

Smithson and Verkuilen (2006) to “nudge” those zeros a bit in. If 𝑦 is the original proportions with 

zeros and/or ones and 𝑁 is the total number of observations, then the transformed proportion 

is 
𝑦(𝑁−1)+ 0.5

𝑁
.   

An alternative way of dealing with exact zeros and ones is to estimate a zero one inflated 

beta regression (Cook, Kieschnick, & McCullough, 2008; Ospina & Ferrari, 2010, 2012). This will 
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estimate the probabilities of having the value zero and/or one as separate processes.   The logic 

is that we can often think of proportions of zeros or ones as being qualitatively different and 

generated through a different process as the other proportions. For example, we can think of 

doing no household work at all is something very different from doing a tiny bit of household 

work. 

The zero one inflated beta distribution consists of three parts: 

 a probability that the dependent variable is zero, 𝑃𝑟(𝑦 = 0). This probability could be 

made dependent on explanatory variables using any model for a binary dependent 

variable. For example, it can be modeled as a logistic regression. 

 a probability that the dependent variable is one, 𝑃𝑟(𝑦 = 1). This probability can be 

modeled in the same way as the Pr (y = 0). 

 the distribution of the dependent variable given that it is between zero and one, which is 

modeled as a beta distribution as in equations (1) till (3). 

    This means that 𝑦𝑖is assumed to be distributed as: 

𝑓(𝑦𝑖) = Pr(𝑦𝑖 = 0) + Pr(𝑦𝑖 = 1) + (1 − Pr(𝑦𝑖 = 0)) × (1 − Pr(𝑦𝑖 = 1))

× 𝐵𝑒𝑡𝑎(𝜇𝑖, 𝜑𝑖) 

If there are no exact ones in the data, then this model simplifies to a zero inflated beta: 

𝑓(𝑦𝑖) = Pr(𝑦𝑖 = 0) + (1 − Pr(𝑦𝑖 = 0)) × 𝐵𝑒𝑡𝑎(𝜇𝑖, 𝜑𝑖) 

Similarly, if there are no exact zeros in the data, the model simplifies to a one inflated beta: 

𝑓(𝑦𝑖) = Pr(𝑦𝑖 = 1) + (1 − Pr(𝑦𝑖 = 1)) × 𝐵𝑒𝑡𝑎(𝜇𝑖, 𝜑𝑖) 

Continuing the example started above, Table 3 shows the results of modeling the 

proportion of the day spent on household work as a zero inflated beta. The beta part is modeled 

as before, that is, a logit link function for 𝜇𝑖 and a log link function for 𝜑𝑖. The probability of a 

zero, that is, spending no time at all on household work, is also modeled with a logit link function. 

There are now three sets of parameters: one for the mean, one for the probability of choosing 

zero, and one for the scale parameter 𝜑𝑖. When exponentiated all three sets of parameters can 

be interpreted directly. Starting with the 𝜇 equation: The constant means that a male who works 

40 hours per week and does some household work is expected to spend 0.10 minutes on 

household work for every minute it spends on something else. This ratio decreases by 1% for 

every hour the person works longer, and increases by 47% if the respondent is female. The 

second column of Table 3 gives the odds and odds ratios for doing no household work at all. The 

odds of doing no household work for men that work 40 hours per week is 0.24 (the constant), 

that is, we expect in that group to find 0.24 persons who have done no household work for every 

person that has done some household work. This odds increases (a non-significant) 1% for every 
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hour one works longer and decreases by 68% if the respondent is a female. The 𝜑 parameter for 

men who work 40 hours per week is 11 and increases by 1% for every hours someone works 

longer and decreases a non-significant 16% when the respondent is female. 

 

Table 3 Exponentiated parameters for a zero-inflated beta model on the proportion of time spent 

on household work 

  𝜇 Pr (𝑦 = 0) 𝜑 

Usual hours per 

week work 

 0.99*** 1.01 1.01** 

  (0.00) (0.20) (0.01) 

Respondent’s 

Gender 

male 1.00 1.00 1.00 

  (.) (.) (.) 

 female 1.47*** 0.32*** 0.84 

  (0.00) (0.00) (0.06) 

Constant  0.10*** 0.24*** 11.48*** 

  (0.00) (0.00) (0.00) 

Observations  2784   

Source: Created by author for this entry using data from (U.S. Bureau of Labor Statistics 
2017). 

Exponentiated coefficients; p-values in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Instead of the coefficients one can also look at the marginal effects. Now different marginal 

effects can be of interest. Table 4 shows three of these: the effect on the overall mean (including 

zero), the effect on the probability of doing no household work, and the effect on the mean given 

that one does at least some household work. These are shown in Table 4. Working an hour longer 

reduces the average time spend on household work by 1.3 minutes, has no noticeable effect on the 

probability of doing no household work, and the average time spend on household work given that 

one does some household work also increases by 1.3 minutes. Overall females spend 68 minutes 

more on household work than men, they are 12 percentage points less likely to do no household 

work and if they do at least some household work then they spend 55 minutes more than men.  
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Table 4 Marginal effects (the means are in minutes per day) for zero inflated beta model 

  Overall mean Pr(y=0) Mean if y > 0 

Usual hours per 

week work 

 -1.28*** 0.00 -1.31*** 

  (0.00) (0.20) (0.00) 

Respondent’s 

Gender 

male (reference) (reference) (reference) 

     

 female 68.04*** -0.12*** 55.49*** 

  (0.00) (0.00) (0.00) 

Observations  2784   

Source: Created by author for this entry using data from (U.S. Bureau of Labor Statistics 
2017). 

p-values in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Quasi-likelihood 

A major alternative to models based on the beta distribution are models estimated by 

maximizing a quasi-likelihood function. Quasi-likelihood models for proportions have been 

around for a long time (Wedderburn, 1974), but have popularized more recently by Papke and 

Wooldridge (1996). For creating a quasi-likelihood function, we need a so-called mean function 

and a variance function. The mean function relates the predicted mean to the explanatory 

variables. Any inverse link function that can be used for the beta distribution can also be used as 

a mean function for a quasi-likelihood function. The variance function captures how the variance 

depends on the predicted mean. These two functions are combine to form the quasi-likelihood 

function. The strength of these models is that they don’t require a correct specification of the 

entire distribution, but only require a correct specification of the mean function. Even the 

variance function does not have to be correct. 

The most common quasi-likelihood model for fractional data is the fractional logit model. 

It uses the logit inverse link function (see Table 1) for the mean function and the variance function 

is  𝑣𝑎𝑟(𝜇𝑖) = 𝜇𝑖(1 − 𝜇𝑖). A convenient feature of this model is that it can be estimated using 

regular logistic regression models with robust standard errors (Papke & Wooldridge, 1996). 

Fractional logit models have two advantages over the models based on the beta distribution.  

First, it is more robust than the beta distribution. In a beta regression an error in the 

specification of the 𝜑 part, will also result in a bias of the estimates in the 𝜇 part of the model. 

For a fractional logit only a correctly specified conditional mean is necessary. (Meaney & 

Moineddin, 2014; Papke & Wooldridge, 1996) However, the fractional logit only models the 

conditional mean. As a consequence, it cannot answer questions about other characteristics, like 
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are men more homogenous (smaller variance) than women when it comes to the amount of time 

spent on household work. If that is the question of interest, then a model for the entire 

distribution, like a beta regression model, is necessary. (Smithson & Verkuilen, 2006) 

Second, a fractional logit model can include observations with exact zeros or ones. The 

predicted mean cannot become zero or one, but the observations can. The logic used to include 

such observations is very different from the logic used in a zero one inflated beta. In a fractional 

logit model, a zero proportion is just an indication of a small conditional mean. Applied to the 

example we have used thus far: If one usually spends a very small fraction of the day on 

household work, then it can happen that on a day one spends no time on household work. So the 

difference between a zero and a small proportion is assumed to be gradual rather than a 

completely different process.  

Table 5 shows the results of a fractional logit model on the proportion of the day spent on 

household work, that is, the explanatory variables determine the conditional mean via the logit 

link function from Table 1. The results are very similar to the beta regression model from Table 

2. A male working 40 hours is expected to spend 0.08 minutes on household work for every 

minute spend on other things, this ratio increases by 1% if the respondent works an hour longer, 

and increases by 75% when the respondent is female. This corresponds to 1.3 minutes less time 

for household work for every hour the respond work longer, and 71 minutes more household 

work per day for women compared to men. 

 
Table 5 Exponentiated coefficients and marginal effects (in terms of minutes per day) of a fractional logit model 

  exp (𝛽) Marginal effect 

Usual hours per 

week work 

 0.99*** -1.34*** 

  (0.00) (0.00) 

Respondent’s 

Gender 

male (reference) (reference) 

    

 female 1.75*** 70.65*** 

  (0.00) (0.00) 

Constant  0.08***  

  (0.00)  

 Observations 2784  

Source: Created by author for this entry using data from (U.S. Bureau of Labor Statistics 
2017). 

p-values in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Explaining multiple proportions 

The model becomes more complex when there are multiple proportions that all add up to 

one. For example, the composition of neighborhoods in terms of the immigration background of 

the residents. Before one starts modeling, it is a good idea to first look at the distribution in the 

data. The challenge is that more variables means a higher dimensional graph. However, one of 

the proportions is redundant: If we have three proportions adding up to one, and we know two 

of those, then we also know the third. So three proportions can be plotted in two dimensions. 

This gives rise to a common graph for plotting three proportions: the triangular plot. An example 

is Figure 3, which shows the compositions of different neighborhoods in the city of Amsterdam 

in the Netherlands. There are three sets of grid lines. To find which gridline belongs to which axis, 

one looks at the axis that crosses it at the value zero. The grid lines parallel to this crossing axis 

are the relevant grid lines. So if one is looking for the proportion of western non-Dutch migrants 

in a neighborhood, then the axis crossing it at zero is the upward sloping axis (non-western 

immigrant), so the upward sloping grid lines are the relevant gridlines for western non-Dutch 

migrants. The horizontal gridlines are relevant to the proportion of non-western immigrants, and 

the downward sloping gridlines for the proportion of non-immigrants (Dutch). It shows that the 

proportion of western non-Dutch immigrants remains between about 10% and a bit less than 

40%, the proportion of Dutch residents remains between a bit less than 20% and a bit more than 

80%, and the proportion of non-western immigrants between less than 10% and a bit less than 



15 

 

80%.  

 

 

 
 Analysis of proportions, Figure 3 Proportions of residents with non-western, western but non-Dutch, and Dutch 

backgrounds in different neighborhoods in Amsterdam.

 

Source: Created by author for this entry using data from (OIS Amsterdam 2017). 
 

Maximum Likelihood and Maximum Quasi-likelihood 

Because the proportions have to add to one, the different proportions are related: If the 

share of non-western immigrant increase in a neighborhood, then at least one of the other shares 

has to decrease. A model for the entire distribution of these proportions should allow for that 

correlation. Moreover, this interrelationship between proportions means that an explanatory 

variable influencing one proportion, automatically also influences the remaining proportions as 

well, and a model should take that into account. One candidate for such a model is the Dirichlet 

distribution, which is a multivariate generalization of the Beta distribution. For three proportions 

(𝑦1, 𝑦2, and 𝑦3, where  𝑦1 = 1 − 𝑦2 − 𝑦3) the probability density function is shown below. It has 

two (in general: the number of proportions minus one) location parameters 𝜇 and one scale 
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parameter 𝜑. 

𝑓(𝑦1, 𝑦3, 𝑦3|𝜇, 𝜑) =  
Γ(𝜑)

Γ(𝜇2𝜑)Γ(𝜇3𝜑)Γ((1 − 𝜇2 − 𝜇3)𝜑)
𝑦1
(1−𝜇2−𝜇3)𝜑−1𝑦2

𝜇2𝜑−1𝑦3
𝜇3𝜑−1 

The means, variances and covariances are shown below. It shows that the means add up 

to one, the variances are very similar to the variances of the beta distribution, and the 

covariances are all negative.  

𝑚𝑒𝑎𝑛(𝑦𝑘) = {

𝜇𝑘 if 𝑘>1 

1 −∑𝜇𝑘

𝐾

𝑘=2

if 𝑘 =  1
 

𝑣𝑎𝑟(𝑦𝑘) = 𝜇𝑘(1 − 𝜇𝑘)
1

1 + 𝜑
 

𝑐𝑜𝑣(𝑦𝑖, 𝑦𝑗) = −𝜇𝑖𝜇𝑗
1

1 + 𝜑
 

The link function that has mainly been used to include explanatory variables is the 

multinomial link function for the means and the log link function for the scale parameter (𝜑). The 

inverse multinomial link function is: 

𝜇𝑘 =

{
 
 

 
 

𝑒𝑥𝑖𝛽𝑘

1 + ∑ 𝑒𝑥𝑖𝛽𝑗𝐾
𝑗=2

if 𝑘>1 

1

1 + ∑ 𝑒𝑥𝑖𝛽𝑗𝐾
𝑗=2

if 𝑘 =  1

 

The Multinomial logit link function can be used to create a quasi-likelihood model for 

multiple proportions. It can be estimated by maximizing the log likelihood function of a regular 

multinomial logit using the proportions as dependent variables and using robust standard errors. 

(Mullahy, 2015) The strengths and weaknesses of the multinomial fractional logit compared to 

the Dirichlet regression are analogous to the strength and weaknesses of the fractional logit 

compared to beta regression: The fractional multinomial logit is a more robust than Dirichlet 

regression because the fractional multinomial logit does not try to model the variances and 

covariances of the proportions. This also means that the fractional multinomial logit can only be 

used to answer questions concerning the conditional means and not about other properties of 

the distribution like the variances. Moreover, the fractional multinomial logit can include 

fractions of exactly zero or one, while Dirichlet regression cannot.  

To illustrate the use of these models Table 6 shows the results from a Dirichlet and 

fractional multinomial logit model of the composition of Amsterdam’s neighborhoods. They both 

use the multinomial logit link function for the means and the Dirichlet model used the log link 
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function for the scale parameter. The explanatory variable is the average price of a house in 

thousands of euros per square meter, centered at 4000 euro per square meter (approximately 

the median price). So the constant refers to a neighborhood with median priced houses. The 

exponentiated coefficients are still interpretable in terms of relative proportion ratios, but now 

they are relative to the baseline proportion; in this case the non-western migrants. So, the 

constant in the western equation means that in such a neighborhood one expects to find 0.8 

(Dirichlet) or 0.7 (fractional multinomial logit) western migrants for every non-western migrant. 

This ratio increases by 74% (Dirichlet) or 82% (fractional multinomial logit) if the average price 

increases by a 1000 euros per square meter.  Similarly, one expects to find 2 (Dirichlet) or 1.9 

(fractional multinomial logit) Dutch residents for every non-western resident. This ratio increases 

by 55% (Dirichlet) or 63% (fractional multinomial logit) if the average price increases by a 1000 

euros per square meter.  

The marginal effects in Table 6 show that the percentage of non-western migrants decrease 

by 9 (Dirichlet) or 10 (fractional multinomial logit) percentage points if the average price 

increases by a 1000 euros per square meter. The share of Western migrants increases by 4 

percentage points if the average price increases by a 1000 euros per square meter, and the share 

of Dutch residents increases by 5 (Dirichlet) or 6 (fractional multinomial logit) for a thousand-

euro increase in average price. Notice that the marginal effects add up to 0. This way the 

predicted proportions will add up to one. 
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Table 6 Exponentiated coefficients and marginal effects of a Dirichlet and multinomial fractional 

logit model 

  Exp(beta) Marginal effect 

  Dirichlet Fractional 

multinomial 

logit 

Dirchlet Fractional 

multinomial 

logit 

Non-western Price   -0.09*** -0.10*** 

    (0.00) (0.00) 

 Constant     

      

Western Price 1.74*** 1.82*** 0.04*** 0.04*** 

  (0.00) (0.00) (0.00) (0.00) 

 Constant 0.79*** 0.72***   

  (0.00) (0.00)   

Dutch Price 1.55*** 1.63*** 0.05*** 0.06*** 

  (0.00) (0.00) (0.00) (0.00) 

 Constant 2.03*** 1.94***   

  (0.00) (0.00)   

𝜑 Price 2.05***    

  (0.00)    

 Constant 30.99***    

  (0.00)    

 N 95 95 95 95 

Source: Created by author for this entry using data from (OIS Amsterdam 2017). 
p-values in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Modeling the inter-relationship between proportions 

The Dirichlet and fractional multinomial logit models are good for modeling the impact of 

explanatory variables on the proportions, but they are not suitable for investigating the 

interrelationship between proportions. The fractional multinomial logit model ignores that 

completely by designating that covariance as nuisance parameters. The covariance structure in a 

Dirichlet distribution is best thought of as a structure that is as close as possible to independence. 

Normally independence implies a covariance of zero, but with proportions all covariances cannot 

be zero, instead they would tend to be negative. (Aitchison, 2003 [1986] ) More precisely, the 

covariance present in a Dirichlet distribution captures independence in the following sense: If for 

each observation we draw a value from k independent gamma distributions, and transform those 

draws to proportions, then those proportions would follow a Dirichlet distribution. So the 

covariance structure implicit in the Dirichlet distribution is useful as a null-hypothesis of 

independence, but not for studying associations between proportions that deviate from 
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independence.  

One solution that has been proposed by Aitchison (2003 [1986] ) is to transform the 

proportions analogous to a multinomial link function, and assume that those transformed 

variables have a multivariate normal distribution. If we have three proportions  𝑦1, 𝑦2, and 𝑦3, 

where  𝑦1 = 1 − 𝑦2 − 𝑦3, then the transformation will create two new variables 𝑧2 and 𝑧3, such 

that 𝑧2 = ln (
𝑦2

𝑦1
) and 𝑧3 = ln (

𝑦3

𝑦1
). This model has not been used a lot in the social sciences. The 

biggest unsolved hurdle is how to transform the results of that model into a metric that is easy 

to interpret and communicate.  

 

Proportions as explanatory variables 

Multiple proportions can also show up as explanatory variables. For example, one could try 

to explain the Gross Domestic Product (GDP) per capita of countries with the proportion of the 

workforce employed in the primary (agriculture and mining), secondary (industry), and tertiary 

(service) sector. Often the effects of explanatory variables are interpreted as the influence of 

changing one variable while keeping all other variables constant. This cannot be true with 

multiple proportions: if a larger share of the workforce is employed in the tertiary sector than 

either the primary sector, or the secondary sector, or both have to decline.   

In fact, if one tried to add all three proportions to the model, then most statistical software 

will either drop one of these proportions from the model or not estimate the model and return 

an error message saying that there is perfect multicolinearity. This is to be expected. With three 

proportions adding up to one, one of the proportions is redundant.  

Consider the example in table 7. It shows the result of a quasi-likelihood model with a log 

link function explaining the GDP per capita with the composition of the labor force for non-oil 

producing countries in 2014.  The GDP per capita comes from the Penn World Tables (Feenstra, 

Inklaar & Timmer 2015) and is measured as purchasing power parities (PPPs) in 2011 US dollars. 

The composition of the labor force originates from the World Development Indicators (World 

Bank Group 2017). The proportion of the workforce employed in the service sector is excluded 

from the model. This means that the exponentiated constant is the predicted GDP per capita for 

a country with no one employed in either agriculture or industry, and thus everybody employed 

in services. In such a country the model predicts a GDP per capita of about 80,000 dollars. A 

percentage point increase in the part of the labor force employed in agriculture and a 

corresponding percentage point decrease in the part of the labor force employed in services 

leads to a decrease in GDP per capita of 5%. Similarly, a percentage point increase in the share 

working in industry and a corresponding percentage point decrease in the share working in 

services leads to a decrease in GDP per Capita of 3%. Since the service sector is excluded from 
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the model, the coefficients have to be interpreted as the effect of an increase in one sector which 

is compensated by a corresponding decrease in the service sector alone.  The model does allow 

for other scenarios, like a percentage point increase in agriculture and half a percentage point 

decrease in industry and services, but that is not how the coefficients are be interpreted. If one 

has only three proportions one can show the complete range effects by plotting predicted 

outcomes on a triangular plot, like in Figure 4.  

 
Table 7 the influence of the composition of the labor forces on GDP per capita using a quasi-likelihood model with a 

log link function 

 exp (𝛽) 
agriculture 0.95*** 

 (0.00) 

industry 0.97** 

 (0.00) 

Constant 79,987*** 

 (0.00) 

Observations 155 

Source: Created by author for this entry using data from (Feenstra, Inklaar & Timmer 2015) and (World 

Bank Group 2017) 

Exponentiated coefficients; p-values in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

With more proportions the triangle plot is not an option. In that case one can compare the 

predicted outcome in different scenarios. For example, compare the predicted GDP per capita of 

the USA and Germany, as they have similar proportions employed in agriculture but different 

proportions employed in industry and services. Then compare the predicted GDP per capita of 

Germany with China as they have similar proportions employed in industry, but different 

proportions in agriculture and services. That way one can create effects that represent more 

realistic scenarios than the ones where all changes are compensated by the service sector alone. 
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Analysis of proportions, Figure 4 Predicted GDP per Capita based on the composition of the labor force.

 

Source: Created by author for this entry using data from (Feenstra, Inklaar & Timmer 2015) and (World 

Bank Group 2017) 
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