The Stata Journal (2011)

11, Number 2, pp. 1–3

Stata tip 97: Getting at ρ s and σ s

Maarten L. Buis Department of Sociology Tübingen University Tübingen, Germany maarten.buis@uni-tuebingen.de

There are a number of models in Stata that estimate additional coefficients besides regular 'regression-like' coefficients. Often these have an interpretation as a standard deviation or a correlation of either error terms or random coefficients. Examples are [R] **xtmixed** or [R] **heckman**. Sometimes we want access to these coefficients to perform a test or impose a constraint. However, getting access to these parameters is not always straightforward. The problem is that Stata programs often do not estimate these coefficients directly but a transformed version of those parameters. In this Stata tip I will illustrate how to recover these parameters, test hypotheses, and impose constraints.

The reason for estimating the transformed parameters rather than the parameters directly is that that not all positive and negative numbers represent valid values for correlations or standard deviations, which can make it more difficult to estimate the model. The transformation is a way to work around this problem, as this transformation is chosen such that all numbers represent valid values for this parameter. For example, a standard deviation can only be larger than or equal to 0. If we model the logarithm of the standard deviation instead, then all positive and negative numbers represent valid values. Similarly, correlations are often transformed using a Fisher's z transformation is represented by $z = \frac{1}{2}(\ln(1 + \rho) - \ln(1 - \rho))$. In Stata one would compute this as $z = \operatorname{atanh}(\rho)$. The inverses of these transformation are implemented in Stata as the $\exp()$ and $\operatorname{tanh}()$ functions ([D] function)¹.

The example below will use the heckman command as this will return both standard deviations and correlations on a transformed scale. Other commands where these strategies can be applied are for example [R] heckprob, [R] treatreg, [R] intreg, [XT] xtmixed, [XT] xtlogit², [XT] xtprobit², [XT] xtmelogit, [XT] xtmepoisson. Moreover, there are some programs that estimate additional parameters on a transformed scale that are not standard deviations or correlations but where this same strategy can also be applied, for example: [R] nbreg or [ST] streg.

If we want to recover the values of the parameters, we need to know how Stata is calling them. To find that out we can add the coeflegend option to our estimation command. We can than see that neither rho nor sigma have a legend attached to it. However, there are parameters called athrho and lnsigma that do have legends attached to it, and we can read in the manual (and deduce from their names) that these are the Fisher's z transformed correlation and the natural logarithm of the standard

^{1.} The Mata equivalents of these functions have the same names and are documented in [M-5] exp() (for exp() and ln()) and [M-5] sin() (for atanh() and tanh()).

^{2.} However, note that the **rho** in the output of these commands does not refer to a correlation.

Stata tip 97

deviation. So we can recover these parameters as follows:

. webuse womenwk, clear . heckman wage educ, select(married children	educ) nolog coefleg	end	
Heckman selection model (regression model with sample selection)	Number of obs Censored obs Uncensored obs	= = =	2000 657 1343
Log likelihood = -5250.348	Wald chi2(1) Prob > chi2	=	403.39 0.0000

wage	Coef.	Legend			
wage education _cons	1.099506 7.042147	_b[wage:education] _b[wage:_cons]			
select married children education _cons	.5420304 .4409418 .0722993 -1.473038	_b[select:children]			
/athrho /lnsigma	.8081049 1.807547	_b[athrho:_cons] _b[lnsigma:_cons]			
rho sigma lambda	.6685435 6.095479 4.075093				
LR test of ind	dep. eqns. (r	cho = 0): chi2(1) =	47.02	Prob > chi2 = 0.0000	

. // standard deviation of the residual of the wage equation

. di exp([lnsigma]_b[_cons])

6.0954785

. //correlation between residuals of the wage and selection equation

.6685435

If we have specific hypotheses then one way of testing these is to rephrase these hypotheses in terms of the transformed metric. Here I compute the transformed standard deviations and correlations on the fly by using the trick to enter the computations as '=exp' (Cox 2008a). This way exp is immediately evaluated, and test only sees the number that is the result of that computation. Notice that the transformations are not defined for standard deviations of 0 or correlations of -1 or 1. This is another way in which we can see that one needs to be careful when testing hypotheses on 'the boundary of the parameter space' (for example Gutierrez et al. 2001).

2

[.] di tanh([athrho]_b[_cons])

M. L. Buis

Using similar tricks, we can also impose constraints on these transformed auxiliary parameters.

<pre>. constraint 1 [lnsigma]_cons = `= ln(6)´ . constraint 2 [athrho]_cons = `= atanh(.7)´ . heckman wage educ, /// > select(married children educ) ///</pre>								
	straint(1 2) 1							
Heckman selection model (regression model with sample selection)			Number of obs Censored obs Uncensored obs		= 2000 = 657 = 1343			
			Ward Chiz(1)		= 465.26			
Log likelihood = -5251.522 Prob > chi2 = 0.0000 (1) [lnsigma]_cons = 1.791759 (2) [athrho]_cons = .8673005								
wage	Coef.	Std. Err.	Z	P> z	[95% Con:	f. Interval]		
wage								
education	1.104284	.0511957	21.57	0.000	1.003943	1.204626		
_cons	6.911303	.7037765	9.82	0.000	5.531927	8.29068		
select								
married	.5405253	.0639579	8.45	0.000	.4151702	.6658805		
children	.4405534	.0258773	17.02	0.000	.3898347	.491272		
education	.0725339	.010469	6.93	0.000	.0520151	.0930527		
_cons	-1.467094	.1436783	-10.21	0.000	-1.748699	-1.18549		
/athrho	.8673005							
/lnsigma	1.791759	•	•	•	•	•		
rho	.7				-1	1		
sigma	6							
lambda	4.2	•			•	•		
LR test of indep. eqns. (rho = 0): chi2(1) = 44.67 Prob > chi2 = 0.0000								

References

Cox, N. J. 2008a. Stata tip 59: Plotting on any transformed scale. The Stata Journal 8: 142–145.

——. 2008b. Speaking Stata: Correlation with confidence, or Fisher's z revisited. The Stata Journal 8(3): 413–439.

Gutierrez, R., S. Carter, and D. M. Drukker. 2001. On boundary-value likelihood-ratio tests. *Stata Technical Bulletin* 60: 15–18.