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Abstract

This article deals with a model for describing a sequence of events, for example: educa-

tion is typically attained by a set of transitions from one level of education to the next. In

particular this article tries to reconcile measures describing the effect of a variable on each

of these transitions with measures describing the effect of this variable on the final out-

come of that process. Such a relationship has been known to exist within a sequential logit

model, but it has hardly been used in empirical research, mainly because of an absence

of a practical way of giving it a substantive interpretation. This article tries to provide

such an interpretation, by showing that the effect on the final outcome is a weighted sum

of the effects on each transition, such that a transition gets more weight if more people

are at risk of passing that transition, passing the transition is more differentiating, and

people gain more from passing.

1 Introduction

Some processes are best described as a sequence of steps or choices. For example, the choice

to have many children is not a single event, but rather a sequence of choices to get yet another

child (ignoring twins, triplets, etc.). Similarly, the process of attaining education can be seen

as sequence of transitions between one school type and the next. Yet another example would

be a process where someone first enters the military or not, and given that one has entered the

military, one is exposed to combat or not. In order to describe such a process it is often useful

to look at these individual steps or transitions, but also at the end result of that process. The

purpose of this article is to present a technique that relates these two. This technique will

be based on a sequential model and especially, but not exclusively, a sequential logit model

(Fienberg, 1977; Fullerton, 2009)1. The sequential logit model estimates the relationship
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between explanatory variables and the odds of passing each transition. This model will then

be used to also derive the effect of an explanatory variable on the final outcome, which turns

out to be a weighted sum of the effects on passing transitions.

This was already established by Mare (1981). However, he framed this result as indicating

that models focussing solely on the final outcome — for example, a linear regression model

explaining years of education — conflate changes in the marginal distribution of the outcome

and changes in effects on the different transitions (Mare, 1981, 83). As a consequence, this

result has mainly been understood, at least within the discipline of social stratification re-

search, as an argument against models that try to study effects on the final outcome and not

as a possibility to study the relationship between the effects on transitions and effects on the

final outcome.

However, Mare did make two attempts at interpreting this relationship. First, by deriving

how changes in the transition probabilities influence the effect of an explanatory variable on

the final outcome, which turned out to be ‘too complex’ to be of practical use (Mare, 1981,

78). Consequently, this method has not been picked up at all by the discipline. Second,

by comparing a set of scenarios that showed how the effects on the final outcome changed

when the marginal distribution changes (Mare, 1981, 82). This method has only been used

twice (Smith and Cheung, 1986; Nieuwbeerta and Rijken, 1996). A reason for this may be

that it is hard to choose which scenarios to compare: it is hard to find the right balance

between scenarios different enough to be interesting but not so different that the amount of

extrapolation becomes uncomfortable.

This article tries to add to this literature by showing that one can interpret the relationship

between effects on passing transitions and effects on the final outcome. For example, if one

studied the influence of family background on educational attainment, then the log odds

ratios of passing transitions returned by a sequential logit gives a good description of the

influence of family background on the process of attaining education. One could also assign

(pseudo-)years of education to each outcome. These are the number of years a ‘standard

student’ would need in order to attain a level of education. For example, if one studied the

US educational system one could assign 12 years to someone who only finished high school and

16 for college graduates. Then one can use the results from the sequential logit model to also

predict the final outcome, the expected number of pseudo-years of education, and look at how

family background influences that outcome. This effect of family background on the highest

attained level of education can be decomposed into a weighted sum of the effects of family

background on passing transitions. The aim of this article is to show that this decomposition

has a substantive interpretation. It makes intuitive sense that the effect on the final outcome

is a weighted sum of the effects on each transition. What has been overlooked is that the

weights also make substantive sense. In this decomposition a transition receives more weight

when:

• more people are at risk of passing that transition,

• passing that transition is more differentiating, that is, the weight is largest when the

probability of passing is 50%, which means that neither passing nor failing that transi-
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tion is virtually universal , and

• people gain more from passing that transition, that is, the difference in expected out-

come (in the example above pseudo-years of education) between those that pass and

those that fail is larger.

Rather than having separate models for effects on the final outcome and effects on passing

different transitions (for example: Shavit and Blossfeld, 1993), this decomposition allows for

an integrated discussion of these two related processes. Moreover, this decomposition will

allow one to study how changes in the distribution of the outcome variable influence the

effect of an explanatory variable on the final outcome. For example, a major development

in the educational systems of almost every country in the last century is that more recent

cohorts tend to obtain more education (Hout and DiPrete, 2006), a process called educational

expansion. This is a change in the marginal distribution, and the method discussed in this

article allows one to study the consequences of this development.

The decomposition in this interpretable form exist for the marginal effect for continuous

explanatory variable and for discrete changes for categorical explanatory variables. A limita-

tion of this method is that it provides a description of the patterns of association, but these

have no causal interpretation.

This article will start with a discussion of the sequential logit model and then derive the

decomposition. It will illustrate its use with two examples: the effect of father’s education

on the offspring’s education in the Netherlands and the effect in West-Germany of women’s

education on the number of children they get.

2 Decomposing the effect on the final outcome

2.1 The sequential logit model

The decomposition of the effect of an explanatory variable on the final outcome into a weighted

sum of effects on the odds of passing each transitions starts with a sequential logit model.

Consider, a hypothetical process consisting of four states: A, B, C, D, as represented in Fig-

ure 1. These states could be educational levels, such that A is no education, B is primary

education, C is secondary education, and D is tertiary education. Figure 1 shows how re-

spondents face three transitions: they can attend primary education or opt for no education

at all; if they opt for primary education they can choose to leave the system once they have

completed primary education, or go on to secondary education; and if they opt for secondary

education, they can then either choose to leave once they have completed this level or go on

to tertiary education. Alternatively, these states could be the number of children such that

A is no children, B is 1 child, C is 2 children, and D is 3 or more children. An implication of

this model is that if someone’s highest-achieved level is B, then that person was ‘at risk’ of

passing the first two transitions, but not the third. Furthermore, it implies that the person

passed the first transition, but failed the second.

The model assumes that one has to be ‘at risk’ of passing a transition — that is, to have

passed through all lower transitions — in order to make a decision at that transition about
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Figure 1: Hypothetical process
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whether to continue or to leave the system. Aside from this, these decisions are assumed to be

completely independent. As a result, one can estimate the effects on passing each transition

by running separate logistic regressions for each transition on the appropriate sub-sample

(Mare, 1980). This model is shown in equation (1).

Pr(pass1, i = 1|x1i, x2i) = p̂1i = Λ(λ̂01 + λ̂11x1i + λ̂21x2i)

Pr(pass2, i = 1|x1i, x2i, pass1 = 1) = p̂2i = Λ(λ̂02 + λ̂12x1i + λ̂22x2i) if pass1 i = 1(1)

Pr(pass3, i = 1|x1i, x2i, pass2 = 1) = p̂3i = Λ(λ̂03 + λ̂13x1i + λ̂23x2i) if pass2 i = 1

The function Λ() is the standard logistic function, meaning that Λ(·) = exp(·)
1+exp(·) . The

conditional probability that person i passes transition k is p̂ki. The association between x1
and the probability of passing transition k is λ̂1k, and the constant for transition k is λ̂0k.

Whether or not individual i has passed transition k is indicated by the indicator variable

passk i. It is assumed that everybody is at risk of passing the first transition.

Cameron and Heckman (1998) have given an important critique of the sequential logit

model, in which they question whether the results of a sequential logit model can be given a

causal interpretation. They give two reasons for that2.

First, they argue that the scale of the dependent variable cannot be compared across

transitions, and that as a consequence the effects can also not be compared across transitions.
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This problem has its origin in the latent propensity representation of the logistic regression

model. In this representation of the logistic regression model there is a latent propensity of

success which depends linearly on a set of explanatory variables and an error term. A success

will occur when the latent propensity is larger than zero, and it is these successes and failures

that are actually observed. In order to identify the scale of the latent propensity, and thus

the scale of the effects, the variance of the error terms is fixed to a constant (π2/3 in case of

a logistic regression). However, if the actual variance of the error term differs across groups,

this scale for the latent variable will change accordingly. So if we were comparing two groups,

and we had reason to believe that the residual variances differ across groups, the scale of the

dependent variable would differ and a comparison of effects would be meaningless (Neuhaus

and Jewell, 1993; Allison, 1999; Williams, 2009; Mood, 2010). This problem is especially

relevant when comparing coefficients in a sequential logit model across transitions, as we

have good reason to expect that the error variances will differ across transitions. Preceding

transitions will in all likelihood also have selected on variables that are part of the error term,

thus reducing the variance of the error term in later transitions (Cameron and Heckman, 1998;

Mare, 2006). Notice, however, that this problem only occurs because we assumed that there is

a latent variable whose scale we need to identify. There is an alternative representation of the

logistic regression model in which it is a non-linear model for the probability of success or a

linear model for the log-odds of success. The scale of the dependent variable is now identified:

it is respectively the expected proportion of success and the logarithm of the expected number

of success per failure. However, both the non-linear probability representation and the latent

variable representation lead to exactly the same model, with exactly the same coefficients.

How can the same numbers from the same model have simultaneously an identified and

unidentified scale? The solution to that paradox is that there is also an unidentified aspect to

the probability, odd and log-odds: these measure the degree of (un)certainty that an event will

happen, and thus directly depends on the information used and the information not used in

estimating the probability; it is the information that was not or could not be used that makes

us uncertain. For example, if we estimate the probability of entering university conditional

on having completed pre-university education, then that condition is part of the information

we used. As a consequence, the probability thus estimated has limited value for predicting

what would happen if suddenly many more students became at risk of entering university. In

general, one cannot give probabilities, odds, and log-odds a counterfactual interpretation, as

they are defined by the model and the sample on which they are estimated. However, this

does not preclude the comparison of probabilities, odds, and log-odds in a purely descriptive

sense.

The second reason why the results of a sequential logit cannot be given a causal interpreta-

tion, is that the selection of students at earlier transitions will result in a correlation between

the error term and the observed variables that will influence the estimated coefficients (Mare,

1980; Cameron and Heckman, 1998). For example, one might suspect that mainly high abil-

ity children from less privileged backgrounds pass transitions while low ability children from

privileged backgrounds also have a fair chance of passing. In that case less privileged children

in higher transitions will on average have higher ability than more privileged children in that
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same transition. So the selection process created a correlation at higher transitions between

family background and ability. If ability was not observed, then the effect of family back-

ground would be underestimated at higher transitions. However, if the aim of the study is

describing the patterns in the data, then a possible correlation between unobserved variables

and observed variables is not relevant. So, one can use sequential logit models in a purely

descriptive manner (Mare, 2011; Xie, 2011).

2.2 The decomposition for marginal effects

In order to make a link between the effects3 of a variable on passing transitions (the λ̂ks)

and the effect of that variable on the final outcome, it is necessary to first think about how

the ‘final outcome’ can be quantified. For example, if we study educational attainment the

outcomes are diplomas. A common way to give each of these diplomas a value is to look at

the number of years a ‘standard student’ would take to achieve that diploma (for example:

Korupp et al., 2002). Alternatively, one could use estimated scales of education that are

in some way optimal as proposed by Buis (2010, Chapter 3) or Schröder and Ganzeboom

(2014). The choice of which values to assign to the outcomes becomes a crucial part of the

model, as it defines what the final outcome measures. Once each outcome has a meaningful

numerical value (lk), it becomes possible to use the sequential logit model to calculate the

expected value for the final outcome (E(Li)). This is set out in equation (2). The expected

value is a weighted sum of the lks, whereby the weights are the probabilities of attaining

transition k. These probabilities can be derived from the transition probabilities estimated

in the sequential logit model using Figure 1.

E(Li) = (1− p̂1i)lA + p̂1i(1− p̂2i)lB + p̂1ip̂2i(1− p̂3i)lC + p̂1ip̂2ip̂3ilD (2)

For some applications it is hard to find meaningful values for each outcome. For example,

what would the values for each outcome be if one studied a process where the first transition

consists of whether or not someone ever served in the military and the second transition if

they were ever exposed to combat or not (MacLean, 2011)? Similarly, what would the values

for each outcome be for a process where potential respondents are first successfully contacted

or not, and given that contact was established they decide whether to participate in a study

or not (Hoogendoorn and Daalmans, 2009)? Since in both examples the main interest is

in one outcome, combat exposure and participation in the survey, a solution is to assign

the value 1 to ‘combat exposure’ and ‘study participation’ and the value 0 to the outcomes

‘no military service’ and ‘military service without combat exposure’ for the first example,

and ‘unsuccessful contact’ and ‘contact but refuse to participate’ for the second example.

That way the expected final outcome is the probability of having experienced combat or

participating in a survey and the effect of explanatory variables on the final outcome are the

marginal effect on those probabilities. If one wants to apply this decomposition to a research

project in which all outcomes are of interest, one can repeat the decomposition such that the

value 1 is assigned to a different outcome in each repetition.

The explanatory variables are part of equation (2) through the p̂kis as described in equa-
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tion (1). Equation (2) can be understood as a regression equation showing a non-linear

relationship between these explanatory variables and the final outcome. In fact, if one plots

the ‘regression line’ from equation (2) together with a regression line from a normal linear

regression, one will generally find that the two are very close. The difference between the

two lines comes from the fact that the functional form of implied by equation (2) ensures the

predicted outcome cannot be less than the lowest level or more than the highest levels, while

linear regression does not impose this constraint. Section 3.1 contains an example of a situa-

tion where equation (2) would deviate from a normal linear regression. In the earliest cohort

studied, around 1910, a large portion of the Dutch population had only primary education.

The fact that equation (2) respects that lower bound leads to noticeable non-linearity.

One way to quantify the effect of an explanatory variable on the final outcome is the first

derivative of equation (2) with respect to this explanatory variable. This derivative is shown

in equation (3). A step-by-step derivation is set out in Appendix A.

∂E(Li)
∂xj

=

{1 × p̂1i(1− p̂1i) × [(1− p̂2i)lB + p̂2i(1− p̂3i)lC+

p̂2ip̂3ilD − lA] } λ̂j1 +

{p̂1i × p̂2i(1− p̂2i) × [(1− p̂3i)lC + p̂3ilD − lB] } λ̂j2 +

{p̂1ip̂2i × p̂3i(1− p̂3i) × [(lD − lC)] } λ̂j3

(3)

Equation (3) shows that the effect on the final outcome
(

∂E(Li)
∂xj

)

is a weighted sum of

the effects on each transition (the λ̂jks). The weights (the sections between curly brackets)

consist of three parts:

1. The predicted proportion of people at risk of passing a transition. For the first transition,

this proportion is 1; for the second it is the proportion of respondents who complete the

first transition, p̂1i; and for the third transition, it is the proportion who completed the

second transition, p̂1ip̂2i. Substantively, this means that a transition is more important

when more people are at risk of passing it.

2. The differentiating capacity of the kth transition, as captured by the function p̂ki(1−p̂ki).

This function is lowest if virtually everybody passes or fails, and is highest when the

probability of passing is .5. This makes sense at a substantive level, because if only a

few people pass or fail a transition, any effect of the explanatory variable at this stage

will only affect a few people.

3. The differences between the expected outcome of those who pass the transitions and

those who do not. These are the parts in the square brackets. For instance, the expected

outcome of those who pass the first transition is (1− p̂2i)lB + p̂2i(1 − p̂3i)lC + p̂2ip̂3ilD
and the expected outcome for those that fail the first transition is lA. The difference

between the two is the expected gain from passing the first transition. The substantive

interpretation of this is that a transition becomes more important if passing leads to a

greater expected increase in the final outcome.

As discussed in Appendix A, equation (3) can also be written as equation (4), which

can be a useful variant. The marginal effect of xj on the final outcome is a weighted sum
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of the marginal effects of xj on passing the individual transitions, and this weight consists

of two of the three elements in equation (3): the proportion at risk and the expected gain

from passing that transition. One advantage of this version of the decomposition is that it

is true regardless of the link function used, so it also applies to seqential probits, sequential

cloglogs, etc. Moreover, many people find the marginal effect on passing a transition used

in equation (4) easier to interpret than the log odds ratio of passing a transition used in

equation (3). However, this marginal effect is usually4 also a function of the proportion

passing that transition, so this decomposition no longer clearly separates the distribution

from the effect. If this separation is important, then that would be an argument for using the

decomposition in equation (3) instead. Section 3.1 discusses an example where this separation

is important.

∂E(Li)
∂xj

=

{1 × [(1 − p̂2i)lB + p̂2i(1 − p̂3i)lC + p̂2ip̂3ilD − lA] } ∂p̂1

∂xj
+

{p̂1i × [(1 − p̂3i)lC + p̂3ilD − lB] } ∂p̂2

∂xj
+

{p̂1ip̂2i × [(lD − lC)] } ∂p̂3

∂xj

(4)

What is being decomposed in both decompositions is the marginal effect of an explana-

tory variable on the expected value of the final outcome at typical values of all explanatory

variables. One limitation of this marginal effect is that if the relationship between the ex-

planatory variable and the expected outcome is non-linear, then each observation has its own

marginal effect depending on where on the curve each observation is located. This limitations

becomes more pressing the more pronounced the degree of non-linearity is. The example in

section 3.1 illustrates this point. Moreover, what is typical at the first transition may not be

typical at later transitions. For example, a father with a skilled manual job may be typical

during the first transition in an educational system, but is probably less typical among the

students at risk of entering university. For both these reasons, the marginal effect at typical

values of the explanatory variables is not necessarily the best summary measure of the effect.

To deal with this problem some have proposed to look at average marginal effects — that is,

compute the marginal effect for each observation and average those — as a way of summariz-

ing the effect. This averaged effect of an explanatory variable on the expected final outcome

can also be decomposed into a weighted sum of effects on each transitions, where the weights

are now the average of the weights predicted for each individual. However, the point of the

decomposition is that the weights also have a substantive interpretation as the product of

three substantively interesting components. This point is lost by averaging the weights, as

the average of a product of three components is not the same as the product of the averages

of these three components.

2.3 The decomposition for discrete changes5

Another potential problem with marginal effects is that in non-linear relationships the marginal

effect is somewhat artificial: it is the effect of a unit change if the rate of change remains un-

changed, but the whole point of a non-linear model is that the rate of change is not constant.

This is especially problematic when the explanatory variable is categorical, as the instanta-
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neous rate of change (the marginal effect) is not defined for such a variable. To deal with this

problem some (for example: Long, 1997) have proposed looking at discrete changes — that is,

looking at an actual unit change instead of marginal effects. One can derive a decomposition

of the effects of a unit change in a similar way as the marginal effect. Lets call the discrete

change in the final outcome ∆L̂i. Continuing the example above, but now assuming that the

explanatory variable of interest x is binary with values 0 and 1, and using equation (2), ∆L̂i

can be written as:

∆L̂i = E(Li|x = 1)− E(Li|x = 0)

=
[

(1− p̂11i)lA + p̂11i(1− p̂12i)lB + p̂11ip̂
1
2i(1− p̂13i)lC + p̂11ip̂

1
2ip̂

1
3ilD

]

−
[

(1− p̂01i)lA + p̂01i(1− p̂02i)lB + p̂01ip̂
0
2i(1− p̂03i)lC + p̂01ip̂

0
2ip̂

0
3ilD

]

(5)

Where p̂nmi is short for the predicted probability of person i of passing the mth transition

when the explanatory variable of interest is n. Equation (5) can be rewritten as equation (6).

A step-by-step derivation of this formula can be found in Appendix B.

∆L̂i = { 1 × [(1 − p̂∗2i)lB + p̂∗2i(1− p̂∗3i)lC + p̂∗2ip̂
∗

3ilD − lA] } ∆p̂1i +

{ p̂∗1i × [(1 − p̂∗3i)lC + p̂∗3ilD − lB ] } ∆p̂2i +

{ p̂∗1,2i × [(lD − lC)] } ∆p̂3i

(6)

Where p̂∗mi =
p̂1mi+p̂0mi

2 , that is, the average probability of passing transition m if categories

1 and 0 are equally common. Similarly, p̂∗m,ni =
p̂1mip̂

1

ni+p̂0mip̂
0

ni

2 , that is, the average probability

of passing both transitions m and n if categories 1 and 0 are equally common. Analogous

to the notation used for the discrete change in the final outcome, the discrete change in

the probability of passing transition m is written as ∆p̂mi, which is p̂1mi − p̂0mi. A similar

decomposition was also derived by Mare (1977, chapter 5).

The structure of equation (6) is very similar to equation (4). As a consequence, the inter-

pretation is also similar: The discrete change in final outcome is a weighted sum of discrete

changes in each transition, such that a transition receives more weight when more people are

at risk of passing that transition and the difference in expected outcome between those that

pass and those that fail that transition is larger. Notice however that the proportions used in

this interpretation are rather artificial: they assume that during each transition the number

of observations in each category of the explanatory variable is equal. Even if, by accident,

this happens to be (almost) true for the first transition, selection will make sure that this is

no longer the case in later transitions.

3 Examples

The purpose of the following two examples is twofold: On the one hand, the examples will be

used to illustrate how this decomposition can be used. On the other hand, they will be used

to show some extensions to this decomposition. The first example will be used to show how

one can apply this decomposition to more complex decision trees and emphasize the way this
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method can be used to study the effect of changes in the distribution of the final outcome.

The second example illustrates a special case where the decomposition of discrete differences

is non-parametric.

3.1 Educational expansion and the effect of father’s occupation on the son’s

education

The second example considers the influence of family background on educational attainment

in the Netherlands and how this process changed over cohorts. This is an application with a

more complex decisions tree, as the Dutch education system is a tracked system. So rather

than a hierarchical set of ‘continue or stop’ decision, this decision tree will contain a branching

point, as is illustrated in Figure 2. It is also an application where changes in weights are of

substantive interest. Changes in weights are driven by changes in the probabilities of passing

the different transitions. As in most countries (Hout and DiPrete, 2006), these probabilities

have changed considerably over cohorts in the sense that more recent cohorts are much more

likely to attain higher levels of education than older cohorts; this is illustrated in Figure 3.

This process is called educational expansion. Much of the effort in studying these educational

systems is aimed at getting estimates of effects of parental background on educational at-

tainment while controlling for educational expansion (Mare, 1981; Breen and Jonsson, 2005).

However, since educational expansion is such a common and far reaching change in most

educational systems, one might want to know how educational expansion has changed the in-

fluence of family background on educational attainment. The decomposition proposed in this

article provides a useful way to answer such a question (for example: Ballarino et al., 2014).6

This example will only focus on the sons. Substantively, comparing the decomposition of

male and female respondents would be interesting, as the timing of educational expansion

was different for men and women. However, the mechanics of the decomposition, which is

what this example is supposed to illustrate, would be the same for both men and women.

The simplified representation of the Dutch educational system in Figure 2 assumes that

all respondents complete primary education. After this, they face a choice between leaving

the schooling system and continuing7. If they opt for the latter choice, they have to choose

between the higher secondary and lower secondary school. Once they have finished their

second diploma in either track, they can choose whether or not to get a third diploma,

continuing with: vocational education if they are in the low track, or tertiary education if

they are in the high track. The values assigned to each level of education are estimated in such

a way that the effect of education on income is maximized while controlling for the father’s

occupational status, as described in (Buis, 2010, Chapter 3)8. The values are standardized

to have a mean of 0 and standard deviaiton of of 1 for the cohort that was 12 in 1950. These

values together with the Dutch names for the different educational levels are presented in

Table 1.

Sequential logit models can also be used for tracked systems like the one in Figure 2 (Lucas,

2001; Breen and Jonsson, 2000). Appendix C shows that the decomposition discussed in this

article also applies to such tracked systems and it has exactly the same interpretation. Notice

that this simplified representation of the Dutch education system reduces it to a system of
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Figure 2: Simplified model of the Dutch education system
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Table 1: Description of the Dutch education system
Dutch names English description value

LO primary lA = −1.20
LBO or MAVO lower secondary lB = −0.468
HAVO or VWO higher secondary lC = 0.479
MBO vocational lD = −0.031
HBO or WO Tertiary lE = 1.72

11



binary choices. This is convenient, and proved to be enough to reveal the main interesting

trends, but it is not necessary. As discussed in Appendix A.1, the decomposition can also be

computed for systems with multinomial choices. Assuming one has data on actual transitions

made by respondents instead of only the highest achieved level education used in this example,

one can extend this model and the decomposition further to account for the possibility that

some respondents changed track and that there is thus more than one way in which one can

obtain a given diploma.

In this example it makes sense to represent the effects on transitions as log odds ratios

so one can more clearly separate the influence of educational expansion from other changes.

Educational expansion is captured in a sequential logit model by changes in the baseline odds

of passing a transition. An odds ratio controls for changing baseline odds by being a relative

effect. So the argument is that a doubling of the odds is considered to be the same effect

regardless how large the baseline odds is, just as two percentages are sometimes compared

using the argument that a hundredth of some total is comparable to a hundredth of some

other total.9 This is how changes in odds ratios capture changes net of educational expansion,

while the weights represent the influence of educational expansion.

The data were obtained from the International Stratification and Mobility File (ISMF)

(Ganzeboom and Treiman, 2009). The ISMF contains 54 surveys10 on the Netherland, carried

out between 1958 and 2006. The surveys were post-harmonized and merged to increase the

time period covered and the number of respondents, and to lessen the effect of individual sur-

veys’ idiosyncrasies. Time was measured by the year in which the respondent was 12, scaled

in decades since 1950. Information is available for the cohorts born between 1905 and 1991.

Cohort is allowed to have a non-linear effect by representing it as a cubic B-spline parame-

terized such that the coefficients of each variable represents the difference (in this case ratio)

between its year and a reference year (Newson, 2012). So, these parameters can be interpreted

in a similar way as a set of indicator or dummy variables, except that these points are linked

by a smooth curve rather than a step-function. The knots are 1910, 1930, 1950, 1970, and

1990 and the reference year is 1950. A family’s SES was measured according to the father’s

score on the International Socio-Economic Index (ISEI) of occupational status (Ganzeboom

and Treiman, 2003), as information on the father’s occupation was available for the largest

number of cohorts. The original ISEI score is a continuous variable ranging from 10 to 90, but

it was standardized to have the value 0 for those fathers who are skilled manual workers (close

to the mean in 1950) and a standard deviation of 1 for the cohort that were 12 in 1950. The

effect of father’s occupational status was allowed to change linearly with cohort, by adding

an interaction term. Survey weights were used where available. After removing respondents

with missing observations on any of the variables, 43,768 male respondents remained.

The distribution of the highest achieved level of education for different cohorts is shown

in Figure 3. The proportion of pupils who only achieved primary education dropped dramat-

ically, while the proportion attaining tertiary education and vocational education strongly

increased. Figure 3 also shows that vocational education is a relatively recent level of edu-

cation for the Netherlands. Whereas no one from the earlier cohorts completed this level of

education, vocational education completion has rapidly grown to about 40%.
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Figure 3: Distribution of highest achieved level of education for men over cohorts
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The sequential logit model is presented in table 2. The main effects of the father’s occu-

pational status (fisei) represent the effect for the cohort that was 12 in 1950. Thus, for men

from that cohort a standard deviation increase in father’s occupational status is associated

with an 88% increase in the odds of passing the first and second transition, a 29% increase in

the odds of continuing within the lower track, and a 36% increase in the odds of continuing in

the higher track. This effect of father’s occupational status has significantly declined by 6.4%

per decade for the first transition, 1.7% per decade for the second transition and 3.3% per

decade for the last transition within the upper track. The trend in the effect of father’s occu-

pational status was non-significant in the final transition within the lower track. Educational

expansion is captured by the baseline odds plus the four cohort variables. So for men who

were 12 in 1950 and whose father was a skilled manual worker one would expect to find 5.04

individuals that passed the first transition for each individual that failed the first transition.

For similar men from the 1910 cohort this odds would only be a tenth of the odds of the 1950

cohort, that is, one would expect to find only half a person that passed this transition for

every person that failed it. These estimates show a picture similar to Figure 3.

With these estimates and the values that were attached to each level of education one

can compute the expected level of education for people with different father’s occupational

status and born in different years. These are shown in Figure 4. The effect of father’s

occupational status on the highest achieved level of education are the slopes of these curves.

As was discussed in section 2.2, the slope will differ depending on at which value of father’s

13



Table 2: Sequential logit model for men

primary v. lower v. higher lower secondary higher secondary
secondary secondary v. vocational v. tertiary

fisei 1.88 1.88 1.29 1.36
(31.2) (38.5) (9.87) (12.4)

fisei×cohorta .936 .983 .987 .967
(-4.94) (-1.86) (-.886) (-2.36)

cohort 1910b .104 .247 .000242 .677
(-10.9) (-3.78) (-5.88) (-.582)

cohort 1930b .326 .588 .3 .395
(-21.2) (-9.06) (-10.8) (-9.45)

cohort 1970b 3.26 1.05 1.98 1.22
(24.1) (1.57) (15.2) (3.73)

cohort 1990b 7.75 1.23 6.39 2.25
(10.2) (2.32) (14.1) (4.88)

constant 5.04 0.674 0.361 2.42
(59.0) (-17.8) (-32.6) (23.9)

N 43762
log likelihood -49986.0

Exponentiated coefficients; z statistics in parentheses
a Cohort is entered linearly in the interaction
b Reference splines, parameters can be interpreted as dummy variables with 1950 as a reference
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occupational status the slope is computed because these curves are non-linear. For example,

I chose the value 0 to be ‘typical’ (the occupational status of a skilled manual worker, which

is close to the mean for the cohort that was 12 in 1950), so it makes sense to look at the

slopes at that value. At that value the slopes initially become steeper from 1910 to 1930 and

then become flatter after that. If we look instead at the value 2 standard deviations above 0

(the occupational status of a teacher at a secondary school), we don’t see that initial increase

in the effect of father’s occupational status. Instead the slope is steadily declining over time.

Mechanically, this difference is due to the fact that for the oldest cohort the lower bound

forces the slope to flatter at a father’s occupational status of 0 compared with a father’s

occupational status of 2. This also makes substantive sense. Around 1910 a large portion of

the population were basically equal because they all had little education. As a consequence,

if the father got a bit more occupational status, then that did not do much when he started

as a skilled manual worker. However, a small increase in father’s occupational status was

more consequential when the father started as a teacher, as all educational outcomes were for

those children more or less realistic options. So it is important to carefully consider at which

point you evaluate the effects.

Figure 4: Expected highest achieved level of education (years refer to the year in which the
respondent was 12)
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Figure 5 shows the effects of father’s occupational status for sons of skilled manual workers.

Both highest achieved level of education and the father’s occupational status are scaled in

such a way that the standard deviation is 1. So this measure of the total effect is similar to

15



a standardized regression coefficient. Figure 5 confirms the pattern found in Figure 4: The

effect of father’s occupational status initially increases, till around 1945 and then decreased11.

The first step in explaining this pattern is to investigate the contributions of each transition

to the total effect. A striking feature is that the final two transitions (continuing in the

lower track and continuing in the higher track) contribute negligible amounts to the total

effect. Moreover, there has been a shift between the first and the second transitions as to the

dominant source of the total effect. The contribution of the first transition initially increased

and then decreased, while the contribution of the second transition increased throughout the

period being studied. The initial increase in the contributions of the first and second transition

more or less coincide, thus reinforcing one another. The later increase in the contribution of

the second transition was not enough to compensate for the decrease in the contribution of

the first transition, thus leading to the decrease in the effect of father’s occupational status

on the highest achieved level of education.

Figure 5: Contribution of different transitions to the effect of father’s occupation
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The second step of this explanation consists of breaking up each transition’s contribution

into its two parts: the weight and the effect on each transition. Since the contribution is the

product of these two terms, it can be visualized as the area of a rectangle, with a height equal

to the effect and a width equal to the weight. This is shown in Figure 6. The horizontal axis

shows the weights and the vertical axis the effects, while the columns represent the cohorts

and the rows represent the transitions. These figures show that the initial increase in the

contribution of the first transition is due to an increase in its weight, while the later decrease
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of this transition is due to both a decrease in the weight and a decrease in the effects on the

transitions. The increase in importance of the second transition is entirely due to the increase

in the weight of this transition. This increase in weight actually more than offsets a decrease

in the effects. The low contributions of both higher transitions are due to both low effects

and low weight.

Figure 6: Decomposition of the effect of father’s occupational status for men into effects on
passing transitions and weights
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The third step breaks the weights down into three components, which is done in Table 3.

This table shows that the initial increase and the later decline in the first transition’s influence

is primarily due to the differentiating capacity of that transition. Initially, any inequality at

the first transition affected few people, because only a low proportion of students passed. As

the proportion of students passing increased, the transition received more weight, until half of

the students passed, after which inequality at this transition affected less people again because

only a few students failed. The increase in importance of the second transition is partly due

to the differentiating capacity, but also to a strong increase in the number of students that

are at risk of making this transition. The last two transitions receive relatively small weights

because relatively few people are at risk of passing these transitions, and those who pass gain

relatively little. Those who pass the first two transitions gain both the immediate increase in

level of education and the possibility of gaining an extra level of education, while in the third

and fourth transition, people gain only the immediate increase in level of education. These

developments provide a mechanism through which educational expansion influences the effect
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of father’s occupational status on highest achieved level of education.

It is informative to go through all the elements of the first cohort in Table 3 in order to

illustrate how the decomposition works. One can see that the effect on the final outcome is

the weighted sum of the effects on passing transitions: 0.893×0.221+0.698×0.072+0.308×

0.000 + 0.446 × 0.014 = 0.254. The effects on passing transitions can be computed from

Table 2: ln(1.88×0.936−4) ≈ 0.893, ln(1.88×0.983−4) ≈ 0.698, ln(1.29×0.987−4) ≈ 0.308, and

ln(1.36 × 0.967−4) = 0.446 (the differences are due to rounding error that happened because

only three digits are reported in the tables). The weights are the products of the proportion

at risk, the degree of differentiation, and the gain of passing: 1 × .0.226 × 0.977 = 0.221,

0.344 × 0.122 × 1.718 = 0.072, 0.295 × 0 × 0.437 = 0 and 0.049 × 0.235 × 1.241 = 0.014.

The proportions at risk follow directly from the probabilities of passing transitions (the p̂s):

The proportion of respondents at risk in the first transition is 1, the proportion at risk

of passing the second transition is p̂1 = 0.344, the proportion at risk of passing the third

transitions is p̂1× (1− p̂2) = 0.344× (1−0.143) = 0.295, and the proportion at risk of passing

the fourth transition is p̂1 × p̂2 = 0.344 × 0.143 = 0.049. The degrees of differentiation are

0.344×(1−0.344) = 0.226, 0.143×(1−0.143) = 0.122, 0×(1−0) = 0, and 0.621×(1−0.621) =

0.235. The gain from passing the different transitions is (1 − 0.143) × (1 − 0) × −0.468 +

0.143 × (1 − 0.621) × 0.479 + 0.143 × 0 × −0.031 + 0.143 × 0.621 × 1.72 − −1.20 ≈ 0.977,

0.621×1.72+(1−0.621)×0.479−0×−0.031−(1−0)×−0.468 = 1.718, −0.031−−0.468 = 0.437,

and 1.72 − 0.479 = 1.241

3.2 Women’s education and the probability of having a large family

In this example I will study the influence of women’s education on the process leading to ‘large’

families for women born between 1934 and 1936 in West-Germany. The main purpose of this

example is to illustrate the decomposition in terms of discrete differences. For illustrative

purposes it is convenient to have a fairly small decision tree. So in this example the decision

tree stops at ‘3 or more children’ rather than continue for all the children a women could

have. One can imagine a research project in which the interest is on ‘large’ families rather

than the number of children per se. For this cohort in West-Germany the modal number of

children is clearly 2, so I will consider a family with 3 or more children as large. The cohorts

are interesting because they are to a large extend responsible for the ‘baby-boom’ in Germany

(Buis et al., 2012). The process is described in Figure 7.

The next step is to assign values to each outcome. One solution would be to not censor

the number of children at 3 or more, but estimate a model for the complete distribution of

completed fertility. In that case it would make sense to assign the value 0 to no children, 1

to 1 child, etc. The final outcome would in that case be the expected number of children.

However, since the interest is in large families rather than the number of children, I assign the

value 1 to ‘3 or more children’ and the value 0 to all other outcomes. That way the expected

final outcome is the probability of having a large family and the effect of mother’s education

on the final outcome is the marginal effect on the probability of having a large family. By

choosing these values the decomposition in equation (6) simplifies to equation (7).
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Table 3: Detailed decomposition of the effect of father’ occupational status on men’s educa-
tional attainment

primary v. lower v. higher lower secondary higher secondary
year secondary secondary v. vocational v. tertiary

1910

effects on 0.893 0.698 0.308 0.446
transitions
weight 0.221 0.072 0.000 0.014
at risk 1.000 0.344 0.295 0.049
differentiate 0.226 0.122 0.000 0.235
gain 0.977 1.718 0.437 1.241
p̂ 0.344 0.143 0.000 0.621
total effect 0.254

1930

effects on 0.762 0.664 0.282 0.378
transitions
weight 0.283 0.197 0.017 0.055
at risk 1.000 0.621 0.445 0.176
differentiate 0.235 0.203 0.088 0.250
gain 1.204 1.557 0.437 1.241
p̂ 0.621 0.284 0.098 0.489
total effect 0.368

1950

effects on 0.630 0.630 0.257 0.310
transitions
weight 0.212 0.368 0.042 0.086
at risk 1.000 0.834 0.498 0.336
differentiate 0.138 0.241 0.195 0.207
gain 1.536 1.834 0.437 1.241
p̂ 0.834 0.403 0.265 0.708
total effect 0.388

1970

effects on 0.499 0.596 0.231 0.241
transitions
weight 0.087 0.432 0.059 0.091
at risk 1.000 0.943 0.551 0.391
differentiate 0.054 0.243 0.243 0.188
gain 1.617 1.888 0.437 1.241
p̂ 0.943 0.415 0.416 0.748
total effect 0.310

1990

effects on 0.368 0.562 0.205 0.173
transitions
weight 0.044 0.487 0.049 0.072
at risk 1.000 0.975 0.532 0.443
differentiate 0.024 0.248 0.211 0.131
gain 1.804 2.017 0.437 1.241
p̂ 0.975 0.454 0.697 0.845
total effect 0.268
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Figure 7: Process leading to ‘big’ families (3 or more children)
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(7)

The data are from the scientific use file of the Mikrozensus 2008. It contains 6,261 women

born between 1934 and 1936 with valid information on the number of children they received

and their education. Education is measured by 3 educational categories: basic education,

which I define as only general lower secondary education (Hauptschule or Realschule) or less,

lower secondary education plus vocational education, and higher general secondary or more

(Abitur or Abitur followed by vocational education or tertiary education.). The distribution of

the number of children born to women conditional on their education is described in Table 4.

In this table, one can see that women in this cohort were not well educated; 46% of the

women end up with only basic education. One can also see that having a large family is not

uncommon as 32% of the women in this cohort got three or more children. Finally, one can

see that higher educated women tended to get fewer children. It is this pattern that this

example wants to describe in more detail.

One could estimate a sequential logit model using this data, and then compute the de-

composition. However, that is in this case not necessary. Notice, that the decomposition only

depends on the predicted probabilities of passing transitions and that the model would be

fully saturated. A characteristic of fully saturated models is that predictions from that model
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Table 4: Distribution of number of children conditional on mother’s education
no children 1 child 2 children 3 or more Total

children
(row %) (N)

basic 8.7 19.2 33.9 38.2 2,891
vocational 14.4 24.3 35.5 25.9 2,986
Abitur or more 21.9 21.9 30.7 25.5 384

Total (row %) 12.2 21.8 34.4 31.6 100.0
(N) 764 1,365 2,156 1,976 6,261

do not differ from predictions one could directly compute from Table 4. For example the

probability of passing the first transition, that is getting one or more children, for a women

with basic education is 19.2 + 33.9 + 38.2 = 91.3%. If we first estimated a sequental logit (or

sequential probit, or a sequential cloglog, or any other sequential model), followed by predict-

ing the transition probabilities, then we would have gotten the exact same number. In this

sense the decomposition of discrete differences in a fully saturated model is non-parameteric.

If the model is no longer saturated, for example by adding a control variable either linearly or

without adding all the interactions, then the decomposition would differ depending on which

link function was used, and the decomposition would thus no longer be non-parametric.

The decomposition of discrete changes is shown in Table 5. Women with vocational

education tend to have a 12.3% lower chance of getting a large family compared to women with

basic education. All transitions contribute to this negative effect but the largest contribution

comes from third transition, which has both the largest effect and the largest weight. The

weight for the final transition is highest as the gain is high — everybody who passes the third

transition by definition has a large family — and there is still a substantial proportion of

women at risk of passing that transition. For the first transition everybody is at risk, but

only a small proportion who pass the first transition actually get a large family.

Women with Abitur tend to have only 0.4% lower chance of getting a large family compared

to women with vocational education. This small effect is the result of two opposing effects:

women with an Abitur are less likely to pass the first transition, that is, they are more likely

to remain childless compared to women with vocational education. However, once a woman

with Abitur has 2 children, she is more likely to get a third child. The negative effect on

passing the first transition is larger than the positive effect at the third transition, but the

weight of the first transition is lower than the weight of the third transition.

It is informative to show how the elements in Table 5 are related. The total effect is a

weighted sum of the effects on passing the transitions. For example, the total effect for the

comparison of vocational education versus basic education is −0.057×0.358−0.073×0.421−

0.108 × 0.667 = −0.123. The weights are the product of the proportion at risk and the gain:

For example, the weight of the first transition is 1× 0.358 = 0.358.

It is also informative to show how Table 5 can be derived from Table 4. The total effects

can be computed directly from Table 4: For example, the probability of getting 3 or more

children is 0.259 when a woman has vocational education and 0.382 when a woman has basic
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Table 5: Decomposition of the effect of education on the probability of having a big family

first child second child third child

vocational versus ∆p̂i -0.057 -0.073 -0.108
basic weight 0.358 0.421 0.667

at risk 1.000 0.885 0.667
gain 0.358 0.476 1.000
Total effect -0.123

Abitur or more ∆p̂i -0.075 0.004 0.032
versus vocational weight 0.314 0.358 0.588

at risk 1.000 0.819 0.588
gain 0.314 0.438 1.000
Total effect -0.004

Table 6: transition probabilities conditional on mother’s education
first child second child third child

basic 0.913 0.789 0.530
vocational 0.856 0.716 0.422
Abitur or more 0.781 0.720 0.454

education, so the difference is -0.123, which is the total effect reported in Table 5. In order to

compute the differences in the transition probabilities one needs to compute those transition

probabilities from Table 4. To repeat the example above: the probability of passing the

first transition for a women with basic education is 19.2 + 33.9 + 38.2 = 91.3%. The other

transition probabilities can be computed in the same way, and these are shown in Table 6.

The effect on passing the first transition for the comparison between vocational education

and basic education is 0.856 − 0.913 = −0.057.

To compute the the weights we need the “average” transition probabilites (p̂∗i ). For

example, the p̂∗1i for the comparison of vocational versus basic education can be computed as

(0.913 + 0.856)/2 = 0.885. This and the other “average” transition probabilities are shown

in Table 7. The comparison of Abitur and vocational education is a good illustration that

these averages can be rather artificial: the transition probabilities of each group are given

the same weight even though there are 2,986 women with vocational education in the sample

and only 384 women with Abitur. These “average” probabilities can now be used to compute

the two components of the weights as reported in Table 5. For example, for the comparison

between vocational education and basic education, the gain from passing the first transition

is p̂∗2i × p̂∗3i = 0.753 × 0.476 = 0.358. Similarly, for this same comparison the proportion at

risk for the second transition is p̂∗1i = 0.885.

4 Conclusion

The purpose of this article was to discuss a method for studying processes consisting of a

sequence of steps and especially relating effects of a variable on passing each transition to the
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Table 7: “Average” transition probabilities (p̂∗i ) for the different contrasts

p̂∗1i p̂∗2i p̂∗3i p̂∗1,2i
vocational versus 0.885 0.753 0.476 0.667
basic
Abitur or more 0.819 0.718 0.438 0.588
versus vocational

effect of that variable on the final outcome. The idea behind this is that effects on passing

each transition and effects on the final outcome are not competing descriptions of the process

being studied but natural complements. Treating these effects as complementary creates

the challenge to move beyond a separate discussion of these two estimates to an integrated

discussion.

This challenge was met by showing that the sequential logit model and other sequential

models also imply an estimate for the effect on the final outcome. In case of a sequential logit

model, this estimate is a weighted sum of effects (log odds ratios) on passing transitions such

that the effect receives more weight if more people are at risk of passing that transition; if the

transition is more differentiating (that is, if the proportion of respondents who pass is closer to

50%); and if there is a larger difference in the expected outcome between people who pass and

fail that transition. This method decomposes the marginal effect of an explanatory variable

on the final outcome, and thus applies to continuous explanatory variables. A variation

of this decomposition was developed that decomposes the discrete change in final outcome

in a weighted sum of discrete changes in the probabilities of passing transitions. In this

decomposition a transition receives more weight when more people are at risk and the expected

gain from passing a transition is larger. A limitation of this decomposition is that it is only

descriptive and does not have a causal interpretation.

Apart from enabling an integrated discussion of effects on each transition and effects

on the outcome, this decomposition also allows for studying the impact of changes in the

distribution of the outcome on the effects of explanatory variables on that outcome. For

example, if one is studying the effect of parental background on educational attainment over

cohorts, it is interesting to also study the impact of the general increase in highest achieved

level of education over cohorts on the effect of parental background. This can be especially

interesting since the increase in average educational attainment across cohorts is one of the

most universal and far-reaching changes in educational systems across countries during the

20th century (Hout and DiPrete, 2006).

This method was illustrated using two examples that are also used to introduce several

extensions. The first example considered the effect of father’s occupational status on the

process of educational attainment in the Netherland between 1905 and 1991. The Dutch

educational system is a tracked system in that children at about the age of 12 are selected

in different tracks. This example was used to illustrate that the decomposition can also be

applied to decision trees that are more complex than a set of hierarchical pass or fail decisions.

It showed that the composition of the effect of father’s occupation on the offspring’s highest

achieved level of education shifted from being primarily determined by the first transition
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(whether or not to continue after primary education) to being primarily determined by the

second transition (the choice between the vocational and the academic track). The last two

transitions (whether to finish vocational or tertiary education) contributed relatively little

throughout the period being studied. The differences in the distribution of education across

cohorts (educational expansion) were shown to explain this shift in importance between the

first and second transitions and a striking feature of the trend in effect on the final educational

outcome. This feature is that the trend over cohorts showed an initial increase followed by a

decrease. The initial increase can be explained by the increase in the proportion of students

that pass the first two transitions from less than 50% to around 50%, thus initially increasing

the weights for both transitions. The weight for the second transition also increased as more

students became at risk of passing that transition. The subsequent decrease happened because

the weight of the first transition sharply decreased since passing that transition became nearly

universal. These changes also explain the shift in importance between the first and second

transitions.

The second example considered the effect of women’s education on the process through

which they get a ‘large’ (three or more) number of children for West-German women born

between 1934 and 1936. This example was used to illustrate the decomposition in terms

of discrete differences instead of marginal effects. Women with vocational education have a

12% larger chance of having a large family compared to women with only lower secondary

education. Most of this effect is due to the last transition (whether to get a third child after

having two children). Women with higher secondary education or more have about the same

chance of getting a large family compared to women with vocational education. However this

is due to two effects canceling each other out: Women with higher secondary education are

less likely get a first child, but are more likely to get a third child if they already have two

children compared to women with vocational education.

This example was used to show what can be done when it is not possible to assign a value

to each outcome state. This is problematic as the final outcome of the process is defined

as the average outcome, and the average can only be computed if each outcome state has

a value. However, in those cases, there is often one state that is of particular interest, and

by assigning the value one to that state and the value zero to all other states, the outcome

becomes the probability of attaining the state of interest. This way the effect on the final

outcome becomes a marginal effect on the probability of attaining the state of interest.

In conclusion, this article has shown how the study of a sequential process, like attaining

education or getting children, can be enriched by studying both effects on passing each tran-

sition within that process and effects on the final outcome of that process as complementary

pieces of information.
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Notes

1This model is also known under a variety of other names: sequential response model (Maddala, 1983),

(unconstrained) continuation ratio logit (Agresti, 2002; Cole and Ananth, 2001), model for nested dichotomies

(Fox, 1997), and Mare model (Cameron and Heckman, 1998).
2While both arguments by Cameron and Heckman (1998) are valid, there is some evidence that in at least

one application — the effect of parental background on educational attainment in the Netherlands —- the

effect of these problems is not big enough to change the qualitative conclusions (Buis, 2011).
3The word effect is here used in a descriptive rather than a causal sense.
4The exception would be when an identity link function was used.
5I thank an anonymous reviewer for pointing this generalization of the decomposition out to me.
6An alternative approach to capturing the influence of educational expansion based on the ordered logit

model instead of the sequential logit model was proposed by Ballarino et al. (2009) and Ballarino and Schadee

(2010).
7Since I measure education as the highest finished level of education, continuing education actually means

continuing and finishing a subsequent level of eduction. Even though continuing education after primary

education was compulsory during almost the entire historical period that is being studied, finishing a subsequent

level of education was not compulsory.
8A similar scale for education was developed by Schröder and Ganzeboom (2014).
9For limitations of this argument see for example (Marks, 2004).

10These surveys are, using the coding from (Ganzeboom and Treiman, 2009): net58, net67, net67t, net70,

net71c, net71, net74p, net76j, net77, net77e, net79p, net81e, net82e, net82n, net82u, net85o, net86e, net86l,

net87i, net87j, net87s, net88o, net90, net90o, net91j, net92f, net92o, net92t, net94e, net94h, net94o, net95h,

net95s, net95y, net96, net96c, net96o, net96y, net98, net98e, net98f, net98o, net99, net99a, net99i, net00f,

net00s, net02e, net03f, net03n, net04e, net04i, net06e, net06i.
11A similar pattern was found using a different method in (Buis forthcoming), making it less likely that this

pattern is an artefact of the method.

A Derivation and generalization of equations (3) and (4)

Equation (3) is the first derivative of equation (2). Equation (2) is repeated below:

E(Li) = (1− p̂1i)lA + p̂1i(1− p̂2i)lB + p̂1ip̂2i(1− p̂3i)lC + p̂1ip̂2ip̂3ilD

To generalize the result, the p̂kis are assumed to be dependent on the explanatory variables

using a link function g(·) and the inverse link function g−1(·), which could be the logit link

function used in equation (1) but could also be any other link function.

g(p̂ki) = λ̂0k + λ̂1kx1i + λ̂2kx2i = ηk if passk−1 i = 1

p̂ki = g−1(ηk) if passk−1 i = 1

A list of common link function is given in Table 8. An interesting link function in this list

is the cloglog link function, as that will result in a discrete time hazard model (Allison, 1982;

Läärä and Matthews, 1985; Jenkins, 1995). The probit link function was included in this list

because it is such a common alternative to the logit link function. The log and identity link

functions need to be handled with care, as they can lead to predicted probabilities outside
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Table 8: Common inverse link functions and their derivatives
link name inverse link function ∂g−1(ηk)

∂ηk

logit exp(ηk)
1+exp(ηk)

p̂ki(1− p̂ki)

probit Φ(ηk) φ(ηk)
cloglog 1− exp(− exp(ηk)) (p̂ki − 1) ln(1− p̂ki)
log exp(ηk) p̂ki
identity ηk 1

Φ(·) and φ(·) are the CDF and PDF of the standard normal distribution

the [0, 1] interval. However, they can occasionally be useful when one wants effects in terms

of risk ratios (log) or risk differences (identity).

The derivative of the expect outcome with respect to xj can be computed using the sum

rule, the product rule, (for example: Gill, 2006, pp. 190–191), and the derivative of the inverse

link function as given in Table 8.

Using the sum rule, the first derivative can be written as:

∂E(Li)

∂xj
=

∂(1− p̂1i)lA
∂xj

+
∂p̂1i(1− p̂2i)lB

∂xj
+

∂p̂1ip̂2i(1− p̂3i)lC
∂xj

+
∂p̂1ip̂2ip̂3ilD

∂xj

Using the product rule, this can be rewritten as:

∂E(Li)

∂xj
= lA

∂(1− p̂1i)

∂xj
+

lB

(

∂p̂1i
∂xj

(1− p̂2i) +
∂(1 − p̂2i)

∂xj
p̂1i

)

+

lC

(

∂p̂1i
∂xj

p̂2i(1− p̂3i) +
∂p̂2i
∂xj

p̂1i(1− p̂3i) +
∂(1 − p̂3i)

∂xj
p̂1ip̂2i

)

+

lD

(

∂p̂1i
∂xj

p̂2ip̂3i +
∂p̂2i
∂xj

p̂1ip̂3i +
∂p̂3i
∂xj

p̂1ip̂2i

)

The terms in this equation can be rearranged in such a way that all elements that have

the same ∂p̂ki
∂xj

in common are grouped together, resulting in equation (4):

∂E(Li)
∂xj

=

{1 [(1− p̂2i)lB + p̂2i(1− p̂3i)lC + p̂2ip̂3ilD − lA]}
∂p̂1i
∂xj

+

{p̂1i [(1− p̂3i)lC + p̂3ilD − lB ]}
∂p̂2i
∂xj

+

{p̂1ip̂2i [lD − lC ]}
∂p̂3i
∂xj

This equation can be turned into equation (3), by choosing the logit link function, use the

chain rule to rewrite ∂p̂k
∂xj

as ∂g−1(ηk)
∂ηk

∂ηk
∂xj

= ∂g−1(ηk)
∂ηk

λjk, and look up in Table 8 that ∂g−1(ηk)
∂ηk

is

in that case p̂ki(1− p̂ki).

The function p̂ki(1− p̂ki) is interpreted as the differentiating capacity of the kth transition,
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because this is a function that is largest when 50% pass that transition and decreases as either

passing or failing becomes more universal. This interpretation also carries over when one uses

the probit link, as φ(ηk) has a very similar shape. However, this is not generally true. For

example, if the cloglog link was chosen the maximum effect would not happen when 50% of

the people pass that transition but at approximately 63% (to be exact: 100×(1−e−1)). With

the log link the the function steadily increases with the proportion passing that transition,

so the maximum occurs when everybody passes that transition. So with those link functions

it more meaningful to stick with the decomposition in the form of equation (4).

Some variations on the sequential model apply a constraint on ηk. All one needs to do to

apply this decomposition to those models is adjust ∂ηk
∂xj

to incorporate that constraint. For

example, a fully constrained continuation odds ratio model (Cole and Ananth, 2001) imposes

the constraint that the odds ratio of passing a transition associated with variable xj is the

same for each transition. So in that model ∂ηk
∂xj

= λj instead of λjk. Similarly, in the model

proposed by Hauser and Andrew (2006) ηk = λk0+φk

∑

j λjxj with the identifying constraint

φ1 = 1. In that case ∂ηk
∂xj

is φkλj .

A.1 The decomposition with a multinomial link function

This decomposition will also work when the decision tree consists of points with more than

two choice options. In that case, one would use the multinomial logit link function when at

a transitions k there are more than two options. If there are M choices in transition k, then

the link function for choice l is exp(ηkl)

1+
∑M

m=1
exp(ηkm)

. Consider the example in Figure 8.

We can write the expected outcome as:

E(Li) = (1− p̂1ip̂2i)lA + p̂1ilB + p̂2i(1− p̂3i)lC + p̂1ip̂3ilD

Computing the first derivative, and collecting terms with the same ∂p̂ki
xj

leads to:

∂E(Li)

∂xj
= [lB − lA]

∂p̂1i
xj

+ [(1− p̂3i)lC + p̂3ilD − lA]
∂p̂2i
∂xj

+ p̂2i[lD − lC ]
∂p̂3i
∂xj

With a multinomial link function the derivative of p̂kli with respect to xj is p̂kli(λklj −
∑M

m=1 λkmj p̂kmi). Filling this into the equation and collecting terms with the same λklj leads

to:

∂E(Li)
∂xj

=

{1 × p̂1i(1 − p̂1i) × [lB − 1−p̂1i−p̂2i

1−p̂1i
lA − p̂2i(1−p̂3i)

1−p̂1i
lC − p̂2ip̂3i

1−p̂1i
lD] } λ̂j1 +

{1 × p̂2i(1 − p̂2i) × [(1− p̂3i)lC + p̂3ilD − 1−p̂1i−p̂2i

1−p̂2i
lA − p̂1i

1−p̂2i
lB] } λ̂j2 +

{p̂2i × p̂3i(1 − p̂3i) × [(lD − lC)] } λ̂j3

The structure of this decomposition is exactly the same as in equation (3), except that

when computing the nett gain (the part in square brackets) from choosing l in transition

k when there are more than two possible choices, one needs to be explicit that the loss is

conditional on not choosing l.
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Figure 8: A process with a multinomial choice
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B Derivation of equation (6)

The derivation starts with equation (5), repeated below:

∆L̂i =
[

(1− p̂11i)lA + p̂11i(1− p̂12i)lB + p̂11ip̂
1
2i(1− p̂13i)lC + p̂11ip̂

1
2ip̂

1
3ilD

]

−
[

(1− p̂01i)lA + p̂01i(1− p̂02i)lB + p̂01ip̂
0
2i(1− p̂03i)lC + p̂01ip̂

0
2ip̂

0
3ilD

]

Collecting terms sharing the same l gives:

∆L̂i =
[

(1− p̂11i)− (1− p̂01i)
]

lA+
[

p̂11i(1− p̂12i)− p̂01i(1− p̂02i)
]

lB+
[

p̂11ip̂
1
2i(1− p̂13i)− p̂01ip̂

0
2i(1− p̂03i)

]

lC+
[

p̂11ip̂
1
2ip̂

1
3i − p̂01ip̂

0
2ip̂

0
3i

]

lD

This can be rewritten as:
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∆L̂i = −
[

p̂11i − p̂01i
]

lA+
[{

(1−p̂1
2i)+(1−p̂0

2i)
2

}

{

p̂11i − p̂01i
}

+
{

p̂1
1i+p̂0

1i

2

}

{

(1− p̂12i)− (1− p̂02i)
}

]

lB+
[{

p̂1
2i+p̂0

2i

2

}{

(1−p̂1
3i)+(1−p̂0

3i)
2

}

{

p̂11i − p̂01i
}

+
{

p̂1
1i+p̂0

1i

2

}{

(1−p̂1
3i)+(1−p̂0

3i)
2

}

{

p̂12i − p̂02i
}

−
{

p̂1
1ip̂

1

2i+p̂0
1ip̂

0

2i

2

}

{

p̂13i − p̂03i
}

]

lC+
[{

p̂1
2i+p̂0

2i

2

}{

p̂1
3i+p̂0

3i

2

}

{

p̂11i − p̂01i
}

+
{

p̂1
1i+p̂0

1i

2

}{

p̂1
3i+p̂0

3i

2

}

{

p̂12i − p̂02i
}

+
{

p̂1
1ip̂

1

2i+p̂0
1ip̂

0

2i

2

}

{

p̂13i − p̂03i
}

]

lD

This can now be rewritten in terms of p̂∗s and ∆p̂s:

∆L̂i = −∆p̂1ilA+

[(1− p̂∗2i)∆p̂1i − p̂∗1i∆p̂2i] lB+
[

p̂∗2i(1− p̂∗3i)∆p̂1i + p̂∗1i(1− p̂∗3i)∆p̂2i − p̂∗1,2i∆p̂3i

]

lC+
[

p̂∗2ip̂
∗

3i∆p̂1i + p̂∗1ip̂
∗

3i∆p̂2i + p̂∗1,2i∆p̂3i

]

lD

Collecting terms sharing the same ∆p̂ gives equation (6):

∆L̂i = { 1 × [(1 − p̂∗2i)lB + p̂∗2i(1− p̂∗3i)lC + p̂∗2ip̂
∗

3ilD − lA] } ∆p̂1i +

{ p̂∗1i × [(1 − p̂∗3i)lC + p̂∗3ilD − lB ] } ∆p̂2i +

{ p̂∗1,2i × [(lD − lC)] } ∆p̂3i

Notice that, unlike the decomposition of marginal effects, the link function does not play

a role in this decomposition.

C Applying the decomposition to the Dutch education system

Using Figure 1 one can write the expected value of the final outcome — in this case, the

highest achieved level of education — as equation (8).

E(Li) = (1− p̂1i)lA + p̂1i(1− p̂2i)(1− p̂3i)lB + p̂1i(1− p̂2i)p̂3ilC + (8)

p1ip̂2i(1− p̂4i)lD + p1ip̂2ip̂4ilE

Using similar steps as in Appendix A, the effect of variable xj on the highest achieved

level of education can then be written as equation (9).
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∂E(Li)
∂xj

=

{1 × p̂1i(1− p̂1i) × [(1− p̂2i)(1− p̂3i)lB+

(1− p̂2i)p̂3ilC+

p̂2i(1 − p̂4i)lD+

p̂2ip̂4ilE − lA] } λ̂j1 +

{p̂1i × p̂2i(1− p̂2i) × [(1− p̂4i)lD + p̂4ilE−

(1− p̂3i)lB − p̂3ilC ] } λ̂j2 +

{p̂1i(1− p̂2i) × p̂3i(1− p̂3i) × [(lC − lB)] } λ̂j3 +

{p̂1ip̂2i × p̂4i(1− p̂4i) × [(lE − lD)] } λ̂j4

(9)

This equation has the same structure as equation (3), the effect on the final outcome is

a weighted sum of the effects on passing each transition, the λ̂jks. The weights (the parts

between curly brackets) consist of the same three parts:

1. The proportion of people at risk (1, p̂1i, p̂1i(1− p̂2i), and p̂1ip̂2i respectively).

2. A part (p̂ki(1 − p̂ki)) that is small if virtually everybody passes or fails that transition

and is largest when the probability of passing is 0.5.

3. The differences between the expected levels of education of those who pass the transi-

tions and those who do not (these are the parts in the square brackets).
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