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Department of Sociology, Tübingen University, Wilhelmstraße 36, 72074 Tübingen,
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Abstract

Cameron and Heckman (1998) established that a sequential logit model is more
sensitive than many other models to the possible biasing influence of unobserved
heterogeneity. This article proposes a method which allows researchers to find
out how large this potential problem is for their data, their model, and their
hypothesis of interest. This is done by proposing a set of scenarios for this
unobserved heterogeneity, and showing how to estimate the effects of interest
given these scenarios. The set of results from these scenarios give an indication of
how sensitive the results are to assumptions regarding unobserved heterogeneity.
This sensitivity analysis has been applied to a study of educational attainment
in the Netherlands, and it showed that that the finding that the effect of father’s
education declined over transitions is quite sensitive to the assumptions made
about unobserved heterogeneity, but that the finding that the effect of father’s
education declined over birth cohorts is more robust than is often feared.

Keywords: sensitivity analysis, unobserved heterogeneity, Mare model,
sequential response model

1. Introduction

an important model for the describing the process of educational attainment
is the sequential logit model proposed by Mare (1979, 1980, 1981), which de-
scribes this process as a sequence of decisions or steps. For example: 1) whether
to finish secondary education or to leave school with only primary education,
and 2) whether or not to finish tertiary education given that one finished sec-
ondary education. This model also has other applications, for example O’Rand
and Henretta (1982) describe the decision when to retire using the following se-
quence of decisions: 1) whether to retire before age 62 or later, and 2) whether
to retire before age 64 or later given that one has not retired before age 62.
Cragg and Uhler (1970) describe the demand for automobiles as the result of
the following sequence of decisions: 1) whether or not to buy an automobile, 2)
whether to add an automobile or to replace an automobile given that one de-
cided to buy an automobile, 3) whether or not to sell an automobile or not given

Preprint submitted to Research in Social Stratification and Mobility December 14, 2010



that one decided not to buy an automobile. The sequential logit model con-
sists of separate logistic regression for each step or decision on the sub-sample
that is ‘at risk’ of making that decision. This model is known under a vari-
ety of names: sequential logit model (Tutz, 1991), sequential response model
(Maddala, 1983), continuation ratio logit (Agresti, 2002), model for nested di-
chotomies (Fox, 1997), and the Mare model (Shavit and Blossfeld, 1993).

This model has however been subject to an influential critique by Cameron
and Heckman (1998). Their main point starts with the observation that the se-
quential logit model, like any other model, is a simplification of reality and will
not include all variables that influence the probability of passing a transition.
The presence of these unobserved variables is often called unobserved hetero-
geneity, and it will lead to biased estimates, even if these unobserved variables
are not confounding variables. There are two mechanisms through which these
unobserved variables will influence the results. The first mechanism, which I
will call the averaging mechanism, is based on the fact that leaving a variable
out of the model means that one models the probability of passing a transition
averaged over the variable that was left out. This averaging causes problems
because the relationship between the variable left out of the model and the
probability is non-linear. As a consequence, the effect of the included variables
on this average probability is not the same as the effect of these variables on the
probability (Neuhaus and Jewell, 1993; Cameron and Heckman, 1998; Allison,
1999; Williams, 2009; Mood, 2010). The second mechanism, which I will call
the selection mechanism, is based on the fact that even if a variable is not a
confounding variable at the initial transition because it is uncorrelated with any
of the observed variables, it will become a confounding variable at the higher
transitions because the respondents who are at risk of passing these higher tran-
sitions form a selected sub-sample of the original sample (Mare, 1980; Cameron
and Heckman, 1998).

The aim of this article is to propose a diagnostic tool that can help re-
searchers determine how big this problem is for their data and their hypotheses.
Moreover, if this tool indicates that one needs to do something about unobserved
heterogeneity than it will also indicate what the key features of such a model
should be. This tool is a sensitivity analysis with which one can investigate
the consequences of unobserved variables in a sequential logit model. This will
be done by specifying a set of plausible scenarios concerning this unobserved
variability and estimating the individual-level effects within each of these sce-
narios, thus creating a range of plausible values for the individual-level effects.
By comparing the results from different scenarios one can get an idea about
whether unobserved heterogeneity is a problem, and if so, what aspect of it is
most troublesome.

A typical analysis that would use this tool would start with estimating a
regular sequential logit model, followed by the sensitivity analysis. If the con-
clusions turn out to be robust then the analysis is done. If the conclusions
turn out to be sensitive, the sensitivity analysis can help the researcher with
selecting an appropriate method. For example many techniques for dealing with
unobserved heterogeneity rely on a random-effects type assumption that during
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the first transition the unobserved variable is uncorrelated with the observed
variables (for example Mare, 1993; Tam, this issue; Karlson, this issue; Lucas
et al., this issue; Holm and Jæger, this issue). With the sensitivity analysis
proposed in this article one could investigate whether the parameters and tests
of interest are sensitive to this assumption.

Any method for studying effects while controlling for unobserved hetero-
geneity will have to deal with the fact that it tries to control for variables that
have not been observed. A common strategy in is to use information that might
be available outside the data. For example one might know that a variable
only has an indirect influence on the outcome variable via the main explanatory
variable, in which case one can use this variable as an instrumental variable, or
one might know that all variables influencing the main explanatory variable are
present in the data, in which case one can use propensity score matching. An
example of such a strategy that has been applied to the sequential logit model
is the model by Mare (1993, 1994), who used the fact that siblings are likely
to have a shared family background. If one has data on siblings, one can thus
use this information for controlling for unobserved variables on the family level.
Another example of this strategy is the model used by Holm and Jæger (this
issue), who use instrumental variables in a sequential probit model1 to identify
individual-level effects. The strength of this strategy depends on the strength
of the information outside the data that is being used to identify the model.
However, such external information is often not available. In those cases, one
can still use these models, except that the identification is now solely based on
untestable assumptions. This implies a subtle shift in the goal of the analysis:
instead of trying to obtain an empirical estimate of a causal effect, one is now
trying to predict what would happen if a certain scenario were true. This is
not unreasonable: these effects are often the quantity of interest, and if it is not
possible to estimate them, then the results of these scenarios are the next best
thing. However, the modeling challenge now changes from making the best use
of some information that is present outside the data to finding the most informa-
tive comparison of scenarios. The goal of such an analysis is to find a plausible
range of estimates of the causal effect and to assess how sensitive the conclu-
sions are to changes in the assumptions. In essence, one directly manipulates
the source of the problem: the degree of unobserved heterogeneity. This way
one can compare how the results would change if there is a small, moderate,
or large amount of unobserved heterogeneity. (Rosenbaum and Rubin, 1983;
Rosenbaum, 2002; Harding, 2003; DiPrete and Gangl, 2004). In this article I
will apply this general idea to the sequential logit model and propose a method
of estimating these scenarios that will allow a more general set of scenarios to
be estimated and a more general set of parameters and tests to be investigated
for sensitivity.

This article will start with a more detailed discussion of how unobserved

1The sequential probit model is similar to the sequential logit model except that the probit
link function is used rather than the logit link function.
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heterogeneity can cause bias in the estimates of the effect of the observed vari-
ables. I will then propose a sensitivity analysis, by specifying a series of scenar-
ios concerning the unobserved variables. The estimation of the effects within
these scenarios will be discussed next. Finally, the method will be illustrated
by replicating an analysis of the effect of parental background on educational
attainment in the Netherlands by De Graaf and Ganzeboom (1993) and Buis
(2010a, Chapter 2), and assessing how robust their results are to changes in
assumptions about unobserved heterogeneity.

2. The sequential logit model and two effects of unobserved hetero-

geneity

The effect of unobserved heterogeneity in a sequential logit model is best
explained using an example. Figure 1 shows a hypothetical process, which is
to be described using a sequential logit model. There are three levels in this
process: A, B and C. This process consists of two transitions: the first transition
is a choice between A on the one hand and B and C on the other. The second
transition is a choice between B and C for those who have chosen B and C in first
transition. Whether or not an individual passes the first and second transition is
represented by two indicator variables y1 and y2 respectively, which receives the
value 1 when an individual passes a transition and 0 when it fails that transition.
Figure 1 could be a representation of both the educational attainment example
and the retirement example in the introduction. In the former case, A would
correspond to primary education, B would correspond to secondary education,
and C would correspond to tertiary education. In the latter case, A would
correspond to retire before age 62, B would correspond to retire between age 62
and 64, and C would correspond to retire after age 64.

Figure 1: Hypothetical process

A,B,C

B,Cp1

Cp2

B1 − p2

A1 − p1

The sequential logit model models the probabilities of passing these tran-
sitions. This is done by estimating a logistic regression for each transition on
the sub-sample that is at risk, as in equations (1) and (2). Equation (1) shows
that the probability labelled p1 in Figure 1 is related to two explanatory vari-
ables x and u through the function Λ(), while equation (2) shows the same for
the probability labelled p2 in Figure 1. The function Λ() is defined such that

Λ(·) = exp(·)
1+exp(·) . This function ensures that the predicted probability always

remains between 0 and 1, by modeling the effects of the explanatory variables
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as S-shaped curves. The coefficients of x and u (β11, βu1, β12, and βu2) can be
interpreted as log odds ratios, while the constants (β01 and β02) represent the
baseline log odds of passing the first and second transitions.

p1 = Pr(y1 = 1|x, u) = Λ(β01 + β11x+ βu1u) (1)

p2 = Pr(y2 = 1|x, u, y1 = 1) = Λ(β02 + β12x+ βu2u) (2)

Table 1 turns Figure 1 and equations (1) and (2) into a numerical example.
Panel (a) shows the counts, the probabilities of passing, the odds and log odds
ratios when u is observed, while panel (b) shows what happens in this example
when u is not observed. Both x and u are dichotomous (where low is coded as 0
and high as 1), and during the first transition x and u are independent, meaning
that u is not a confounding variable at the first transition. The sequential logit
model underlying this example is presented in equations (3) and (4).

Pr(y1 = 1|x, u) = Λ[log(.333) + log(3)x+ log(3)u] (3)

Pr(y2 = 2|x, u, y1 = 1) = Λ[log(.333) + log(3)x+ log(3)u] (4)

Consider the first transition in panel (a). The constant in the logistic re-
gression equation is the log odds of passing for the group with value 0 for all
explanatory variables, so the constant is in this case log(.333). The effect of x
in a logistic regression equation is the log odds ratio. Within the low u group,
the odds of passing for the low x group is .333 and the odds of passing for the
high x group is 1, so the odds ratio is 1

.333 = 3, and the log odds ratio is log(3).
The effect of x in the high u group is also log(3), so there is no interaction effect
between x and u. The effect of u can be calculated by comparing the odds of
passing for a high u and a low u individual within the low x group, which results
in a log odds ratio of log(3). There is no interaction between x and u, so the
log odds ratio for u within the high x group is also log(3). Panel (b) shows
what happens if one only observes x and y but not u. For example, in that case
300 + 200 = 500 low x persons are observed to have failed the first transition
and 100 + 200 = 300 low x persons are observed to have passed the first tran-
sition. The resulting counts are used to calculate the probabilities, odds, and
log odds ratios. Panel (b) shows that the log odds ratios of x are smaller than
those computed in panel (a). Leaving u out of the model thus resulted in an
underestimation of the effect of x for both the first and the second transition,
even though u was initially uncorrelated with x.

This example can be used to illustrate both mechanisms through which unob-
served heterogeneity can lead to biased estimates of the individual-level effects.
First, the selection mechanism can explain part of the underestimation of the
effect of x at the second transition. A characteristic of the sequential logit model
is that even if u is not a confounding variable during the first transition, it will
become a confounding variable during later transitions (Mare, 1980; Cameron
and Heckman, 1998). The example was created such that u and x are indepen-
dent during the first transition, as the distribution of u is equal for both the low
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Table 1: Example illustrating the consequences of not observing a non-confounding variable
(u)

(a) while observing u

yk

transition u x 0 1 N Pr(pass) odds(pass) log odds ratio

1
low

low 300 100 400 0.25 0.333
log(3)

high 200 200 400 0.5 1

high
low 200 200 400 0.5 1

log(3)
high 100 300 400 0.75 3

0 1

2
low

low 75 25 100 0.25 0.333
log(3)

high 100 100 200 0.5 1

high
low 100 100 200 0.5 1

log(3)
high 75 225 300 0.75 3

(b) without observing u

yk

transition x 0 1 N Pr odds log odds ratio

1
low 500 300 800 0.375 0.6

log(2.778)
high 300 500 800 0.625 1.667

0 1

2
low 175 125 300 0.417 0.714

log(2.6)
high 175 325 500 0.65 1.857
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x group and the high x group. As a consequence, u cannot be a confounding
variable during the first transition. But this is no longer true during the second
transition. For the high x group, the proportion of persons with a high u is
300/500 = .6, while for the low x group that proportion is 200/300 = .667.
The selection at the first transition has thus introduced a negative correlation
between x and u, and u has become a confounding variable. If one does not
observe u, and thus can not control for u, one would expect to underestimate
the effect of x at the second transition. This could in part explain the underes-
timation of the effect of x in the second transition in panel (b) of Table 1, but
not the underestimation of the effect of x in the first transition.

The averaging mechanism can explain the underestimation of the effect of x
during the first transition. The models implicit in panels (a) and (b) have subtly
different dependent variables: in panel (a) one is modeling the probability that
an individual passes the transitions, while in panel (b) one models the average

probability of passing the transitions. The two result in different estimates
because the relationship between the unobserved variables and the probabilities
is non-linear. This issue is discussed in terms of the sequential logit model by
Cameron and Heckman (1998). It also occurs in other non-linear models, and
has been discussed by Neuhaus et al. (1991), Allison (1999), Williams (2009),
and Mood (2010). It is also closely related to the distinction between population
average or marginal models on the one hand and mixed effects or subject specific
models on the other (Fitzmaurice et al. 2004, chapter 13; Agresti 2002, chapter
12). The averaging of the probabilities can be seen in Table 1: for example the
probability of passing transition 2 for low x individuals when not controlling for
u is (100 × 0.25 + 200 × 0.5)/300 = 0.417. The consequence of this is that if
we think that equations (1) and (2) form the true model for the probabilities of
passing the transitions, then the true model for the probabilities averaged over
u should be represented by equations (5) and (6), where Eu(·) is the average of
· over u. Instead, the model represented by equations (7) and (8) are estimated
when u is not observed and u is thus left out of the model. The two models
are not the equivalent because Λ() is a non-linear transformation. Neuhaus and
Jewell (1993) give an approximation of how β∗

11 and β∗
12 deviate from β11 and

β12: β∗
11 and β∗

12 will be smaller than β11 and β12, and the difference between
the estimates β∗

11 and β∗
12 and the estimates β11 and β12 will increase when the

variances of β21u and β22u increase and when the probability of passing is closer
to 50%.

Eu(Pr[y1 = 1|x, z]) = Eu(Λ(β01 + β11x+ βu1u)) (5)

Eu(Pr[y2 = 1|x, z, y1 = 1]) = Eu(Λ(β03 + β12x+ βu2u)) (6)

Eu(Pr[y1 = 1|x, z]) = Λ(β∗
01 + β∗

u1x) (7)

Eu(Pr[y2 = 1|x, z, y1 = 1]) = Λ(β∗
02 + β∗

u2x) (8)
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2.1. Comparing effects across transitions

An important sub-question within the debate concerning the potential in-
fluence of unobserved heterogeneity on the sequential logit model is whether
one can compare coefficients from different transitions (Cameron and Heckman,
1998; Mare, 2006). The concern is that the dependent variable is measured on
different scales across transitions, thus making the effect at different transitions
incomparable. This often called the scaling problem (for example Allison, 1999;
Williams, 2009; Mood, 2010). The argument is clearest in the latent variable
interpretation of logistic regression. There are two equivalent ways of deriving
a logistic regression model: 1) as a non-linear model for the probability or odds
of success, or 2) as a linear model for a latent propensity of success (for exam-
ple Long, 1997). Within the latent variable representation of logistic regression
the scale of the latent propensity is identified by constraining the residual vari-
ance to be equal to a fixed number (π2/3). When one expects (or cannot rule
out) heteroscedasticity the variance of the residual differs across the groups or
transitions, which means that the scale on which the outcome variable is mea-
sured differs across groups, making the comparison of these groups or transition
hard. This is particularly relevant for the sequential logit model, as this model
invites the comparison of coefficients across transitions, and the selection that
happens at these transitions will likely cause a difference in the variance of the
unobserved variables across transitions.

The scaling problem and the averaging mechanism are equivalent in the
sense that the mechanism through which unobserved variables influence the
results are equivalent. However, there is an important difference. On the one
hand, the scaling problem persists even after one controls for all observed and
unobserved variables one wants to control for. After one has controlled for all
these variables there will still be variation between respondents, which we might
call ‘idiosyncratic error’ and which we may conceptually think of as ‘luck’. In
the latent variable interpretation the scale of the dependent variable is still
dependent on the variance of this idiosyncratic error and this variance is still
likely to differ across transitions, thus making comparisons of effects across
transitions difficult. On the other hand, the averaging problem disappears as
soon as one has controlled for all observed and unobserved variable one wants to
control for. Differences in probability or odds can still be due to differences in
the variance of the remaining idiosyncratic error, but the scale of the outcome
of interest is fixed as the expected proportion of successes (probability) or the
expected number of successes per failure (odds). In essence, the problem is
defined away by defining the outcome of interest as the probability or odds after
controlling for a given set of variables. This is the logic behind the suggestion
by Angrist and Pischke (2008) and Mood (2010), to solve the scaling problem
by focussing on the probability instead of the latent variable. This article will
follow the same logic, except that the effects will be interpreted as odds ratios
instead of marginal effects2. The main reason for preferring odds ratios over

2Mood (2010) advocates the use of marginal effects over odds ratios, but the key element
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marginal effects is that the interpretation of interaction effects is much easier in
the former metric compared to the latter metric (Compare (Buis, 2010b) with
(Ai and Norton, 2003)).

Interpreting effects in terms of odds or probabilities does not solve all prob-
lems and arbitrariness. The dependent variable changes when add or remove
explanatory variables, as was shown above when discussing the averaging mech-
anism. However, this is consistent with what the dual nature of what a proba-
bility or an odds is supposed to measure: how likely an event is and the degree
of uncertainty. Such uncertainty can be thought of as coming from all observed
and unobserved variables that were not included in the model. So the dependent
variable is in a sense defined by what one chose not to control for. It is the mod-
eling decision what variables to control for and by implication what variables
not to control for, that makes the scale of the probability or odds meaningfully
comparable across groups or transitions.

3. A sensitivity analysis

The previous section discussed what kind of problems unobserved variables
might cause. The difficulty with finding a solution for these problems is that it
is challenging to control for something that has not been observed. One possi-
ble solution is to perform a sensitivity analysis: specify a number of plausible
scenarios concerning the unobserved variables, and estimate the effects within
each scenario. The aim of this type of analysis is not to obtain an empirical
estimate of the effect per se, but to assess how important assumptions are for
the estimated effect and to obtain a feeling for the range of plausible values for
the effect.

A key step in creating such scenarios is to create a set of reasonable scenarios
concerning the unobserved variable u. When creating the scenarios, it is more
useful to think about u as not being a single unobserved variable but as a
(weighted) sum of all the unobserved variables that one wants to control for.
There are two equivalent ways of thinking about the scale of this compound
unobserved variable. It is sometimes convenient to think of the resulting variable
as being standardized, such that its mean is 0 and the standard deviation is 1.
This way the ‘effect’ of u during transition k — βuk — can be compared with
the effects of standardized observed variables to get an impression of the range
of reasonable values of this ‘effect’. Alternatively, it is possible to think of the
composite unobserved variable as just being an unstandardized random variable
or error term. In this case, the standard deviation of this random variable is
the same as βuk. The standardized unobserved variable will be referred to as
u, while the unstandardized unobserved variable will be referred to as νk in
order to distinguish between the two. The two are related in the following way:
βuku = νk.

of the solution is that probabilities have a known and interpretable scale and the same applies
to odds.

9



All scenarios are variations on the following basic scenario, which is intro-
duced in equations (9) and (10). In this example there are two transitions,
with the probabilities of passing these transitions influenced by two variables x
and u, where u is as defined above. The observed dependent variables are the
probabilities of passing the two transitions averaged over u. So by estimating
models (9) and (10), one can recover the true effects of x. To estimate it, all
one needs to know is the distribution of βuku (= νk) and to integrate over this
distribution. In this article I will consider scenarios where νk follows either a
normal (Gaussian) distribution, a uniform distribution, or a discrete distribu-
tion. The mean of ν1 will be set at 0 and the effect of u in transition k is
set equal to βuk, which are a priori fixed in the scenario. This means that a
person’s value on u will not change over the transitions, but that the effect βuk

can change over transitions. Finally, this article will consider scenarios where
the correlation between u and x during the initial transition is non-zero.

Eν1(Pr[y1 = 1|x, ν1]) = Eν1(Λ(β01 + β11x+ βu1u
︸︷︷︸

ν1

)) (9)

=

∫

Λ(β01 + β11x+ ν1)f(ν1)dν1

Eν2(Pr[y2 = 1|x, ν2, y1 = 1]) = Eν2(Λ(β02 + β12x+ βu2u
︸︷︷︸

ν2

)) (10)

=

∫

Λ(β02 + β12x+ ν2)

f(ν2)dν2

=

∫

Λ(β02 + β12x+ βu2u)

f(βu2u|y1 = 1)du

The effects in each scenario are estimated using maximum likelihood. Refer-
ring back to Figure 1, the likelihood function for an individual i can be written
as equation (11), that is, the probability of observing someone with value A
equals the probability of failing the first transition, the probability of observ-
ing someone with value B equals the probability of passing the first transition
and failing the second transition, and the probability of observing someone with
value C equals the probability of passing both transitions.

Li =







1− p1i if yi = A
p1i × (1− p2i) if yi = B

p1i × p2i if yi = C
(11)

By replacing p1i with equation (9) and p2i with equation (10), one gets
a function that gives the probability of an observation, given the parameters
β. This probability can be computed for each observation and the product of
these form the probability of observing the data, given a set of parameters.
Maximizing this function with respect to the parameters gives the maximum
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likelihood estimates. These estimates include the true effects of the variable of
interest x assuming that the model for the unobserved heterogeneity is correct.

The difficulty with this likelihood is that there are no closed form solutions
for the integrals in equations (9) and (10) if νk follows a normal distribution3.
This can be resolved by numerically approximating these integrals using max-
imum simulated likelihood (Train, 2003). Maximum simulated likelihood uses
the fact that the integral is only there to compute a mean probability. This
mean can be approximated by drawing at random many values for νk from the
distribution of νk, computing the probability of passing a transition assuming
that this randomly drawn value is the true value of νk, and then computing the
average of these probabilities. This approach can be further refined by realizing
that using true random draws is somewhat inefficient as these tend to cluster.
Increasing the efficiency is important as these integrals need to be computed for
each observation, meaning that these simulations need to be repeated for each
observation. One can cover the entire distribution with less draws if one can use
a more regular sequence of numbers. An example of a more regular sequence
of numbers is a Halton (1960) sequence. A Halton sequence will result in a
more regular series of quasi-random draws from a uniform distribution. These
quasi-random draws can be transformed into quasi-draws from a normal distri-
bution or a discrete distribution by applying the inverse cumulative distribution
function. These are then used to compute the average probability of passing the
first transition, as is shown in equation (12), where m represents the number of
draws from the distribution of ν1. At the second transition, the distribution of
ν2 no longer follows the original distribution, but is now conditional on being
at risk. The integral over this distribution is computed by drawing ν2 from the
original distribution as before, but then computing a weighted mean whereby
each draw is given a weight equal to the probability of being at risk assuming
that that draw was the true ν2, as is shown in equation (13). In the appendix
I show that this is a special case of importance sampling (Robert and Casella,
2004, 90–107). This procedure is implemented in the seqlogit package (Buis,
2010c) in Stata (StataCorp, 2009), using the facilities for generating Halton
sequences discussed by Drukker and Gates (2006).

Eε(Pr(y1 = 1|x, u)) ≈
1

m

m∑

j=1

Λ(β01 + β11x+ βu1u) (12)

Eε(Pr(y2 = 1|x, u, y1 = 1) ≈
∑

m
j=1

[
Pr(y1=1|x,uj)Λ(β02+β12x+βu2uj)

]

∑
m
j=1

Pr(y1=1|x,uj)

(13)

3A closed form solution does exist when νk follows a discrete distribution, but the imple-
mentation of this method in the seqlogit package (Buis, 2010c) will not use this analytical
solution for technical reasons.

11



4. An example: The effect of family background on educational at-

tainment in the Netherlands

An important application for the sequential logit model is the study of the
influence of family background on educational attainment (for recent reviews
see: Breen and Jonsson, 2005; Hout and DiPrete, 2006). The potential prob-
lems that unobserved variables can cause were recognized from the time that
the sequential logit model was introduced in this literature (Mare, 1979, 1980,
1981), but interest in this issue has been revived by the critique from Cameron
and Heckman (1998). However, only a limited number of empirical studies have
tried to actually account for unobserved heterogeneity (for exceptions see: Mare,
1993; Rijken, 1999; Chevalier and Lanot, 2002; Lauer, 2003; Arends-Kuenning
and Duryea, 2006; Colding, 2006; Lucas et al., this issue; Holm and Jæger, this
issue; Karlson, this issue; Tam, this issue). The method proposed in this paper
will be illustrated by replicating an analysis that does not control for unobserved
heterogeneity by De Graaf and Ganzeboom (1993) and Buis (2010a, Chapter
2). These studies estimated the effect of father’s occupational status and edu-
cation on transition probabilities between educational levels in the Netherlands.
The original study by De Graaf and Ganzeboom (1993) was part of an influen-
tial international comparison of the effect of family background on educational
attainment (Shavit and Blossfeld, 1993). It used 10 Dutch surveys that were
post-harmonized as part of the International Stratification and Mobility File
[ISMF] (Ganzeboom and Treiman, 2009). Buis (2010a, Chapter 2) updated this
analysis by using an additional 33 Dutch surveys that have since been added to
the ISMF.

4.1. The data

The total of 43 surveys are all part of the ISMF and were held between
1958 and 2006. The individual surveys are described in detail in the appendix
of (Buis, 2010a, chapter 2). Only male respondents older than 25 are used
in the analysis. These surveys contain 35,829 men with valid information on
all variables used in the model4. Family background is measured as father’s
occupational status and father’s highest achieved level of education. Time is
measured by 10-year birth cohorts covering the cohorts that were born between
1891 and 1980. The main effect of birth cohort is added as a set of dummies,
while the effects of family background variables is allowed to change linearly
over cohorts.

Father’s occupational status was measured using the International Socio-
Economic Index (ISEI) of occupational status (Ganzeboom and Treiman, 2003),
which originally ranged between 10 and 90 and was recoded to range between 0
and 8. In concordance with De Graaf and Ganzeboom (1993) and Buis (2010a,
Chapter 2), education of both, the father and the respondent, was measured

4This count deviates slightly from Buis (2010a, Chapter 2) due to a coding error in the
original article involving 63 observations.
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Figure 2: Simplified model of the Dutch education system
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in four categories: primary education (LO), lower second secondary education
(LBO and MAVO), higher secondary education (HAVO, MBO, and VWO),
and tertiary education (HBO and WO). The transitions that were studied by
De Graaf and Ganzeboom (1993) and Buis (2010a, Chapter 2) are: 1) from
primary education or less to a diploma in secondary or tertiary education; 2)
from a diploma in lower secondary education to a diploma in higher secondary
or tertiary education; and 3) from a diploma in higher secondary education to
completed tertiary education. These transitions are displayed in Figure 2.

4.2. The scenarios

In the sensitivity analysis I focuss on the effect of father’s education, and in
particular on two hypotheses: 1) the effect of father’s education decreases over
birth cohorts ,and 2) the effect of father’s education decreases over transitions.
The first hypothesis was chosen as an example because it played such a central
role in the study of educational attainment (for example Mare, 1981; Shavit and
Blossfeld, 1993; Breen et al., 2009). The second hypothesis was chosen because
it is suspected of being particularly sensitive to unobserved heterogeneity (for
example Mare, 1980; Cameron and Heckman, 1998).

The sensitivity analysis is broken up in the following five sets of scenarios,
each exploring different ways in which unobserved heterogeneity could influence
the results.

The first set of scenarios is used to investigate the impact of the amount of
unobserved heterogeneity (βuk) on the statistics of interest. The aim is find out
how extreme a scenario needs to be before conclusions change. In order to figure
out how extreme a scenario is, one needs to have an idea about what a reasonable
value for βuk might be. Remember that u is a standardized variable and that
βuk is its effect in terms of log odds ratios on the odds of passing transition
k. Looking in the literature at the effects of standardized variables that are
likely to have very large effects can help to pin down a reasonable upper bound
for βuk. A good candidate is for instance prior academic performance because
we can expect this variable to have a large effect and because recent empirical
estimates of its effect exist in the literature. The size of this effect appears to be
approximately 2.5, both in the Netherlands (Kloosterman et al., 2009) and in
the United Kingdom (Erikson et al., 2005). This is a very large effect, meaning
that a standard deviation increase leads to an increase in the odds of passing
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of approximately a factor 12 (e2.5). The replication study by Buis (2010a, p.
148) found that the effects of standardized father’s education and standardized
father’s occupation are .82 and 1.45 respectively. So 2.5 seems like a very high
value that could still occur in real data. In order to make sure that the set of
scenarios include very extreme scenarios, models will be estimated where βuk

will be fixed at 0 , 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 respectively. Within this set
of scenarios, the values of βuk will be assumed to be constant over transitions,
the correlation between u and father’s education during the first transitions is
assumed to be 0, and u is assumed to be normally distributed.

The second set of scenarios is used to investigate the impact of changes
in βuk over transitions on the statistics of interest. Empirically we find that
the effects of most variables decrease over transitions, so the assumption that
the effect of u remains constant over the transitions is probably not realistic.
Moreover, the test of the second hypothesis — the effect of father’s education
decreases over transitions — may be particularly sensitive to deviations from
this assumption. If the size of the effect of father’s education is influenced by
the amount of unobserved heterogeneity (βuk) and if this amount of unobserved
heterogeneity changes over transitions, then this will influence the trend in the
effect of father’s education over transitions. For these scenarios it would be
reasonable to let βuk decrease over the transitions, just as most other variables.
However, it would also be reasonable to have scenarios in which βuk increases
over transitions. The unobserved variable u is often thought of as some sort
of ability or school readiness (for example Cameron and Heckman, 1998), and
we might expect selection on ability to increase over transitions if only because
teachers and other school officials might find it harder to observe that ability in
younger children. In this set of scenarios βu1, the βu at the first transition, will
be fixed at 2.5, and at each subsequent transition it will be increased by a fixed
number. This set of scenarios consists of 7 such increments: -1.2, -0.8, -0.4,
0, 0.4, 0.8, 1.2. These factors were chosen because this way the scenario with
most extreme decrease (-1.2) implies that βu in the finale transition is virtually
0 (0.1), while the scenario with the most extreme increase (1.2) implies that
βu in the final transition is close to 5, the maximum in the previous set of
scenarios. The intermediate scenarios represent changes over transitions that
could plausibly occur in real data. Otherwise, the scenarios are equal to the
first set of scenarios.

The third set of scenarios is used to investigate the impact of changes in βuk

over cohorts. Just as we expect the results regarding the second hypothesis to
be particularly sensitive to changes in βuk over transitions, we might expect the
results regarding the first hypothesis to be particularly sensitive to changes in
βuk over birth cohorts. If we think that u is primarily ability, then it would be
reasonable to have scenarios where βuk increases over birth cohorts as we might
believe or hope that selection on family background has gradually been replaced
by selection on ability. It would also be reasonable to include scenarios in which
βuk decreases over birth cohorts as we might be more sceptical and believe that
schools have just become less selective over time, because they face increasing
pressure to let more and more students pass. In this set of scenarios, I assume
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that the βuk is in the first cohort 2.5, and than decreases or increases linearly
over birth cohorts. The scenarios let βuk change with the following amounts per
decade: -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3. These values were chosen because they
have similar consequences as the second set of scenarios: in the most extreme
decreasing scenario βuk ends up with a value of 0.1 and in the most extreme
increasing scenario, βuk ends up with a value of 4.9.

The fourth set of scenarios is used to investigate the impact of the degree to
which u is a confounding variable on the statistics of interest. If we think of u as
consisting mainly of ability then it is unlikely that u is completely independent
of father’s education. I will fix the correlation between u and father’s education
at -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, and βuk at 2.5. Otherwise, the scenarios are
equal to the first set of scenarios.

The final set of scenarios is used to investigate the impact of the distribu-
tion of u on the statistics of interest. Cameron and Heckman (1998) make the
case that assumptions about the distribution of u may influence the results.
In this set of scenarios I will consider two deviations form normality. First, I
will assume that u follows a uniform distribution. This is a less exotic assump-
tion than it may appear at first glance. Assume that u consists mainly of an
ability score as observed by teachers. In that case it is reasonable to assume
that teachers find it easier to determine a rank ordering of children than some
absolute ability measure. The distribution of a rank order is the uniform distri-
bution. This assumption will be implemented in two ways: First I will force u
to follow a continuous uniform distribution, and second I will approximate this
distribution by a discrete distribution where four mass points each receive a
probability of 1/4 and the locations of the mass points are chosen such that the
average is 0, the standard deviation is 1, and the mass points are equally spaced
(leading to the following locations for the mass points -1.34, -0.45, 0.45, 1.34).
The discrete distribution is much more flexible and allows us to approximate
a wide range of distributions (Lindsay, 1983; Heckman and Singer, 1984)5. I
used both methods here in order to get an idea how reasonable this approxima-
tion works in this context. As the second type of deviation from normality, I
consider skewed distributions. Right skewed distributions are approximated by
discrete distributions with 4 mass points that receive the probabilities 0.1, 0.6,
0.2, 0.1 (with locations -1.66, -0.38, 0.90, 2.18) and 5 mass points that receive
the probabilities 0.1, 0.6, 0.2, 0, 1 (with locations -1.37, -0.39, 0.59, 1.57, 2.55).
By adding the mass point with 0 probability, the right tail of the distribution
was moved further out, thus increasing the skewness. Left skewed distributions
were approximated with discrete distributions contain 4 mass points with prob-
abilities 0.1, 0.2, 0.6, 0.1 (with locations -2.18, -0.90, 0.38, 1.66), and discrete
distributions with 5 mass points with 0.1, 0, 0.2, 0.6, 0.1 (with locations -2.55,
-1.57, -0.59, 0.39, 1.37). The amount of unobserved heterogeneity is fixed at

5(Lindsay, 1983; Heckman and Singer, 1984) go further and actually try to estimate this
distribution, while in this article the discrete distribution is only used to approximate different
distributions to create different scenarios.
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Table 2: Description of the different sets of scenarios

baseline
variable βu ∈ {0, 2.5}
fixed corr(u, fed) = 0, ∆cohort = 0, ∆transition = 0, u ∼ N(0, 1)

Changing quantity of unobserved heterogeneity, super-set I
variable βu ∈ {0.0, 0.5, · · · , 5}
fixed corr(u, fed) = 0, ∆cohort = 0, ∆transition = 0, u ∼ N(0, 1)

Unobserved heterogeneity changing over transitions, super-set II
variable ∆transition ∈ {−1.2,−0.8, · · · , 1.2}
fixed βu1 = 2.5, corr(u, fed) = 0, ∆cohort = 0, u ∼ N(0, 1)

Unobserved heterogeneity changing over cohorts, super-set II
variable ∆cohort ∈ {−0.3,−0.2, · · · , 0.3}
fixed βu1 = 2.5, corr(u, fed) = 0, ∆transition = 0, u ∼ N(0, 1)

Changing correlation between unobserved variable and father’s education, super-set II
variable corr(u, fed) ∈ {−0.6,−0.4, · · · , 0.6}
fixed βu = 2.5, ∆cohort = 0, ∆transition = 0, u ∼ N(0, 1)

Changing distribution of unobserved variable, super-set II

variable

u ∼ N(0, 1)
u ∼ U(−1.73, 1.73)
u ∼ D(−1.34, 0.25;−0.45, 0.25; 0.45, 0.25; 1.34, 0.25)
u ∼ D(−1.66, 0.1;−0.38, 0.6; 0.90, 0.2; 2.18, 0.1)
u ∼ D(−1.37, 0.1;−.039, 0.6; 0.59, 0.2; 1.57, 0; 2.55, 0.1)
u ∼ D(−2.18, 0.1;−0.90, 0.2; 0.38, 0.6; 1.66, 0.1)
u ∼ D(−2.55, 0.1;−1.57, 0;−0.59, 0.2; 0.39, 0.6; 1.37, 0.1)

fixed βu = 2.5, corr(u, fed) = 0, ∆cohort = 0, ∆transition = 0

2.5, otherwise the scenarios are the same as the first set of scenarios.
These five sets of scenarios are clustered into two super-sets that differ re-

garding to the relevant baseline model: The first super-set uses the model with-
out unobserved heterogeneity as the baseline and consists of the first set of
scenarios. The second super-set uses the model that fixes βuk at 2.5 (constant
across transitions and birth cohorts) and fixes u to be normally distributed and
uncorrelated with any of the observed variables as its baseline model. It con-
sists of the remaining sets of scenarios. The second super-set checks whether
the conclusions of the sensitivity analysis conducted using the first super-set are
robust. All scenarios are summarized in Table 2.

4.3. The results

Figure 3 gives a first idea of what unobserved heterogeneity does to the
estimates of the effect of father’s education. The lines labeled with βu = 0
represent what one would find using a regular sequential logit model. The lines
labeled βu = 2.5 and βu = 5 represent the effects we would have found if the
true amount of unobserved heterogeneity equaled 2.5 and 5 respectively and we
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Figure 3: Influence of βu on the effect of father’s education
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correctly controlled for that. This figure clearly shows that a regular sequential
logit model in all likelihood underestimates the effect of father’s education. It
also shows that such a model underestimates the trend in that effect over birth
cohorts, but whether it underestimates or overestimates the trend in the effect
over transitions is less clear.

A more detailed description of the effects in the different scenarios is given in
tables 4 and 5. The results of the baseline models with which these scenarios are
compared are reported in table 3. The baseline model for the first super-set of
scenarios is the model without unobserved heterogeneity, that is, βu = 0, while
the baseline model of the second super-set is the model that fixes βu at 2.5. In
the first baseline model the trends in the effect of father’s education over birth
cohorts and across transitions are all negative and the one-sided hypothesis that
the trends are 0 or positive can be rejected at the 5% level for all trends except
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Table 3: Results for baseline models

H0 coefficienta p-value
βu = 0 βu = 2.5 βu = 0 βu = 2.5

βfed×coh1 ≥ 0 -7.2 -15.5 0.000 0.000
βfed×coh2 ≥ 0 -1.1 -8.5 0.078 0.000
βfed×coh3 ≥ 0 -1.7 -9.3 0.016 0.000
βfed2 − βfed1 ≥ 0 -17.9 3.8 0.000 0.812
βfed3 − βfed2 ≥ 0 -25.2 -26.0 0.000 0.000
a % change in odds ratio of fathers education for a decade change

in cohort or between transitions, i.e. (exp[βfed×cohk]− 1)× 100%

and (exp[βfedk+1 − βfedk]− 1) × 100%, respectively.

for the trend over cohorts in the second transition6. In the second baseline
model most of the trends are stronger than in the first baseline model and the
trend over cohorts in the second transition is now also significantly negative.
However, now the trend in effect of father’s education from the first to the
second transition has become positive and non-significant.

The first two columns of Table 4 shows that changing the amount of unob-
served heterogeneity can lead to substantial variation in the size of the trend.
The last three columns show that there are two deviations from the baseline
model: The non-significant trend over cohorts in the second transitions already
turns significant with a small amount of unobserved heterogeneity. This would
indicate that the trend is in all likelihood really negative. The second deviation
from the baseline model is the trend from the first to the second transition. This
shows more worrying pattern in that the variation in coefficient and significance
level is large and the change occur only after βu reached the relatively high
but still reasonable value of 2. This means that there are reasonable scenarios
where the trend is negative and other equally reasonable scenarios where the
trend is not negative, which means that the conclusion concerning this trend is
not robust. The test results concerning the remaining trends are not influenced
by the amount of unobserved heterogeneity.

An interesting finding is that the trend in effect from the first to the sec-
ond transition not only changes in significance but also the parameter changes
from negative to positive. This is consistent with the two mechanisms through
which unobserved variables could influence the results. Both the averaging and
selection mechanism tend to lead to an underestimation of effects in a regular
sequential logit model, so corrections tend to increase the effect. However, the
selection mechanism plays no role during the first transition as no selection has
taken place yet. Because of that one can expect that corrections for unobserved

6The coefficients are shown in terms of % change in odds, while the test concerns the
asymptotically equivalent null hypothesis that the change in log(odds ratio) is larger than or
equal to 0. The reason for this difference is that sampling distribution of the log(odds ratio)
is more likely to be normally distributed (Sribney and Wiggins, 2010).
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Table 4: Results for scenarios, super-set I

H0 coefficienta p-value non-robust scenariosb

min max min max

Changing quantity of unobserved heterogeneity
βfed×coh1 ≥ 0 -26.3 -7.2 0.000 0.000 -
βfed×coh2 ≥ 0 -16.1 -1.1 0.000 0.078 βu ≥ 0.5
βfed×coh3 ≥ 0 -17.5 -1.7 0.000 0.016 -
βfed2 − βfed1 ≥ 0 -17.9 22.0 0.000 0.999 βu ≥ 2
βfed3 − βfed2 ≥ 0 -34.4 -24.0 0.000 0.000 -
a % change in odds ratio of fathers education for a decade change in cohort or

between transitions, i.e. (exp[βfed×cohk]− 1)× 100% and

(exp[βfedk+1 − βfedk]− 1)× 100%, respectively.
b deviate from baseline model with βu = 0

heterogeneity tend to lead to a larger increase in effect during the second tran-
sition than during the first transition, which in turn can lead to the reversal of
the trend across transitions that was observed7.

The scenarios in Table 4 makes rather strong assumptions: βu is constant
across birth cohorts and transitions, and the unobserved variable u is normally
distributed and uncorrelated with any of the observed variables. The scenarios
in Table 5 relax in turn each of these assumptions. The first set of scenarios in
Table 5 shows that, as expected, allowing βu to change across transitions only
influences the test results concerning the trend across transitions. The trend
form the first to the second transition appears to be particularly sensitive, while
the trend from the second to third transition is only influenced by the most
extreme scenario. That would indicate that the results concerning the latter
trend is still fairly robust.

The second set of scenarios in Table 5 shows, against expectation, that
changes in βu across cohorts has fairly little effect on the conclusions concerning
the trend in effect of father’s education across cohorts. The only exception being
the trend during the second transition, but than only in the most extreme sce-
nario. So the trend across cohorts seems to be fairly robust against changes in
the amount of unobserved heterogeneity across cohorts. However, these changes
do seem to have an influence on the trend from the first to the second transition.

The third set of of scenarios in Table 5 show that correlation between the

7However, this is not the only possible outcome because the selection and averaging mech-
anisms interact with one another. Selection tends to decrease the variance of the unobserved
variable at higher transitions which in turn tends to decrease the averaging mechanism at
higher transitions. This might become an issue when the amount of selection is extreme and
the distribution of the unobserved variable is bounded, as in that case the expected negative
correlation between the unobserved variable and the observed variables is likely to be less
or even positive (Cameron and Heckman, 1998), and the reduction in the variance of the
unobserved variable at higher transition is likely to be stronger. Such a scenario is however
unlikely to occur in most educational systems.
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unobserved variable and father’s education at the first transition has no effect
on any of the test results. This is good news as many of the techniques for
dealing with unobserved heterogeneity discussed in this special issue rely on the
assumption that the initial correlation between the observed and unobserved
variables is 0. This result would indicate that such models could be used for
this data and these hypotheses.

The final set of the scenarios showed that the assumption of normality for
the unobserved variable is not quite harmless. In particular allowing for skewed
distributions seems to be important when one tries to control for unobserved
heterogeneity as these assumptions does change some the of the conclusion.

20



Table 5: Results for scenarios, super-set II

H0 coefficienta p-value non-robust scenariosb

min max min max

Unobserved heterogeneity changing over transitions
βfed×coh1 ≥ 0 -15.6 -15.5 0.000 0.000 -
βfed×coh2 ≥ 0 -11.9 -5.1 0.000 0.000 -
βfed×coh3 ≥ 0 -17.0 -2.0 0.000 0.007 -
βfed2 − βfed1 ≥ 0 -26.4 53.6 0.000 1.000 ∆transition < 0
βfed3 − βfed2 ≥ 0 -39.0 -1.9 0.000 0.301 ∆transition = 1.2

Unobserved heterogeneity changing over cohorts
βfed×coh1 ≥ 0 -15.5 -13.3 0.000 0.000 -
βfed×coh2 ≥ 0 -10.6 -2.6 0.000 0.074 ∆cohort = 0.3
βfed×coh3 ≥ 0 -10.8 -5.3 0.000 0.001 -
βfed2 − βfed1 ≥ 0 -13.9 18.7 0.000 0.998 ∆cohort ≤ −0.2
βfed3 − βfed2 ≥ 0 -32.1 -23.8 0.000 0.000 -

Changing correlation between unobserved variable and father’s education
βfed×coh1 ≥ 0 -15.5 -13.4 0.000 0.000 -
βfed×coh2 ≥ 0 -8.5 -6.9 0.000 0.000 -
βfed×coh3 ≥ 0 -9.3 -7.6 0.000 0.000 -
βfed2 − βfed1 ≥ 0 -0.6 3.8 0.433 0.812 -
βfed3 − βfed2 ≥ 0 -26.0 -24.9 0.000 0.000 -

Changing distribution of unobserved variable
βfed×coh1 ≥ 0 -22.4 -10.7 0.000 0.000 -
βfed×coh2 ≥ 0 -11.7 1.0 0.000 0.770 left skewed
βfed×coh3 ≥ 0 -19.3 -5.4 0.000 0.000 -
βfed2 − βfed1 ≥ 0 -25.5 34.0 0.000 1.000 extreme left skewed
βfed3 − βfed2 ≥ 0 -44.7 -3.3 0.000 0.102 right skewed
a % change in odds ratio of fathers education for a decade change in cohort or

between transitions, i.e. (exp[βfed×cohk]− 1)× 100% and

(exp[βfedk+1 − βfedk]− 1)× 100%, respectively.
b deviate from baseline model with βu = 2.5
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5. Conclusion and discussion

The aim of this article is to present a sensitivity analysis that can be used to
investigate the consequences of unobserved variables in a sequential logit model.
The potential bias that these unobserved variables cause are the result of two
mechanisms: First, the averaging mechanism is based on the fact that when a
variable is left out of the model, one models the probability of passing the tran-
sitions averaged over the variable that is left out. As a consequence, estimates
of effects of the observed variables on the probability of passing the transitions
are effects on the average probability rather than the effects on the probability
of passing. These two are different because the unobserved variable is related
to the probabilities through a non-linear function. Second, the selection mech-
anism is based on the fact that a variable that is not a confounding variable
at the first transition is likely to become a confounding variable at later transi-
tions. The reason for this is that the process of selection at earlier transitions
will introduce correlation between observed and unobserved variables.

The method proposed in this article to investigate the consequences of unob-
served heterogeneity is to perform a sensitivity analysis by specifying scenarios
regarding unobserved heterogeneity, and estimating the effects of the observed
variables given those scenarios. This will not give an empirical estimate of the
effects of interest, but it does give an idea about the sensitivity of the estimates
to assumptions about unobserved heterogeneity, the direction of the bias, the
size of the bias, and the range of likely values of the effect. It is often useful
to organize a sensitivity analysis by specifying different sets of scenarios, each
exploring different ways in which unobserved heterogeneity could influence the
results. In the empirical example I discussed five such sets of scenarios: The first
set explores the effect of the amount of unobserved heterogeneity. The second
set explores the effect of changes in the amount of unobserved heterogeneity
over transitions. The third set of scenarios explores the effect of changes in the
amount of unobserved heterogeneity over cohorts. The fourth set explores the
effect of correlation between the unobserved variables and the observed vari-
ables during the first transition. The fifth set explores the effect of different
distributions of the unobserved variable. The effects of the observed variables
within each scenario are estimated by maximum likelihood. The likelihood is de-
fined by integrating over the unobserved variable, which is done using Maximum
Simulated Likelihood (Train, 2003).

This method was illustrated by replicating a study by De Graaf and Ganze-
boom (1993) and Buis (2010a, Chapter 2) on the effect of the father’s occu-
pational status and education on the offspring’s educational attainment. The
sensitivity analysis showes that the test whether the effect of father’s education
decreased over birth cohorts are rather robust, but that the test of whether the
effect of father’s education decreased over transitions is rather sensitive. More-
over, the effect of both father’s education and its trend over birth cohorts are
likely to be underestimated, as these effects are stronger in scenarios with more
unobserved heterogeneity.

To sum up, Cameron and Heckman’s (1998) finding that unobserved het-
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erogeneity might be more of a problem in sequential logit models than in other
models is useful, but in order to have practical implications on the way we do
research, we also need to have an idea of how large this problem is. A sequential
logit model that assumes that there is no unobserved heterogeneity is a simpli-
fication of reality. However, that is in itself not a problem, the whole purpose of
a model is that it simplifies reality. The thing to worry about is that these sim-
plifications have such a strong influence on the results that they rather than the
observations influence the conclusions. Whether unobserved heterogeneity has
a noticeable influence on the conclusions depends not only on the unobserved
variables but also on the exact hypothesis being tested and the observed data.
The sensitivity analysis proposed in this article can help researchers determine
whether they need to worry about unobserved heterogeneity in their data given
the hypotheses that they want to test, and if so, what aspects of unobserved
heterogeneity they need to pay particular attention to.
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Appendix: Sampling from the distribution of νk conditional on having

passed the previous transitions

One method of sampling from a distribution is importance sampling (Robert
and Casella, 2004, 90–107). This appendix shows that the method used in
this article is a special case of importance sampling. The idea behind impor-
tance sampling is that instead of sampling from the distribution of interest f(u)
one draws samples from another distribution g(u), and computes the mean by

weighting each draw by
f(uj)
g(uj)

, so one could approximate Eu[Λ(β02+β12x+βu2u)]

with equation (14).

Eu[Λ(β02 + β12x+ βu2u)] ≈
1

m

m∑

j=1

f(uj)

g(uj)
Λ(β02 + β12x+ βu2uj) (14)

In this article the distribution of interest is the distribution conditional on
being at risk, while the other distribution is the distribution not conditional on
being at risk. These distributions are independent of x, so the conditioning on
x in equation (15) is superfluous, but this will prove useful later on.

Eu[Λ(β02+β12x+βu2u)] ≈
1

m

m∑

j=1

f(βu2uj|x, y1 = 1)

f(βu2uj |x)
Λ(β02+β12x+βu2uj) (15)

Instead of using equation (15) directly, the integral is computed using equa-
tion (16). The aim of this appendix is to show that these two are equivalent.

Eε[Λ(β02 + β12x+ ε)] ≈

∑m
j=1

[
Pr(y ∈ {B,C}|x, εj)Λ(β02 + β12x+ ε)

]

∑m
j=1 Pr(y ∈ {B,C}|x, εj)

(16)

The denominator of equation (16) can be rewritten as in equation (17), which
leads to equation (18)

m∑

j=1

Pr(y1 = 1|x, uj) = m

∑m

j=1 Pr(y1 = 1|x, uj)

m

≈ mPr(y1 = 1|x) (17)

Eu[Λ(β02+β12x+β−u2u)] ≈
1

m

m∑

j=1

Pr(y1 = 1|x, uj)

Pr(y1 = 1|x)
Λ(β02+β12x+βu2uj) (18)

Comparing equations (15) and (18) indicates that the problem can be sim-
plified to showing that equation (19) is true.
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f(uj|x, y1 = 1)

f(uj |x)
=

Pr(y1 = 1|x, uj)

Pr(y1 = 1|x)
(19)

Equation (19) can be rewritten as equation (20). Using Bayes’ theorem,
equation (20) can be rewritten as equation (21). Equation (21) is true, thus
showing that equations (15) and (16) are equivalent. Notice, however, that
this is based on the approximation in equation (17), which will improve as the
number of samples m increases.

f(uj|x, y1 = 1)Pr(y1 = 1|x) = Pr(y1 = 1|x, uj)f(uj |x) (20)
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