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Abstract

One of the tasks of education is to determine which student gets which diploma. In
order to do so, schools select students on characteristics like intelligence, motivation, or
father’s status. The stringency of this selection contains consists of two components: first
the minimal level required to pass a level of education (location of the cut-off value), and
second the strength with which this level is enforced (enforcement of the cut-off value).
The stringency of selection has often been studied using the Discrete Time Logistic model,
but only the results regarding the enforcement were interpreted. This paper shows how
to get information regarding the location of the cut-off value from this model. It shows
that, in the Discrete Time Logistic model, the functional form of trends in location and
enforcement of the cut-off point are related, and illustrates this with data concerning
selection on father’s status from the Netherlands for birthcohorts 1880-1975.

1 introduction

Education has two tasks: it helps students obtain useful knowledge and skills, and and it gives
different students different diplomas according to various characteristics of the students, like
intelligence, motivation, or social status. This paper will focus on the latter task of education:
the selection of students on these characteristics, and more specifically the historical trend
in the stringency of this selection. There are two types of stringency of selection. First,
selection entails that a cut-off value is chosen: a student passes if he scores better than the
cut-off value and fails if he scores worse than that cut-off value. Selection is less stringent if
a lower cut-off value is chosen. Second, this cut-off value has to be enforced. Selection is less
stringent if a given cut-off value is less strictly enforced. Within sociology the selection on
father’s status has long been studied, but the distinction between location and enforcement
has been overlooked in this literature.

The distinction between the location (argument 1) and the enforcement (argument 2) of
the cut-off value is shown visually in figure 1. It shows the relationship between some variable
on which the student is selected (z) and the child’s probability of passing a level of education.
Graph 1.a shows how, with a given strength of enforcement, the stringency of selection can
be decreased by moving the cut-off point to the left. The probability of success for students
with a = between 0 and 4 have greatly improved, by moving the cut-off value from 4 to 0.
Graph 1.b shows how, with a given cut-off point (in this case 2), the stringency of selection
can be decreased by making the enforcement more lax. With weak enforcement, students
with a x of less than 2 still have some probability of passing while students with a = of more
than 2 still have some probability of failing. With strong enforcement, both the probability
that low z children pass and the probability that high z children fail are a lot smaller.



Figure 1: Location and enforcement of the cut-off point
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This paper will deal with the following questions: First, how can the location, and the
enforcement of the cut-off point and a trend in these values be measured? Second, what are
the trends in enforcement and location of the cut-off in the Netherlands for the birth-cohorts
1880-19757 This paper will consist of two parts: First, estimation of the location and the
enforcement of the cut-off point will be discussed. Second, this method will be illustrated by

estimating the model on data from the Netherlands.

2 Applying and interpreting the Discrete Time Logistic Model
for educational transitions

In order to estimate the two forms of stringency of selection — the enforcement and the
location of the cut-off point — one must model the relationship between the zs and the
child’s educational attainment. A frequently used model to estimate this relationship is the
Discrete Time Logistic Model (e.g. Mare, 1980, 1981; Blossfeld and Shavit, 1993; Raftery
and Hout, 1993). This model treats education as a hierarchically ordered series of levels. A
student who achieved a certain level of education is assumed to have passed all ‘lesser’ levels of
education. The Discrete Time Logistic Model estimates the effect of the explanatory variables
on the probability of going from one level of education to the next level of education. The
usual interpretation of the parameters only relate to enforcement of the cut-off value, but the
parameters of the Discrete Time Logistic Model also contain information about the location
of the cut-off value. This section will consist of two parts: the first part will describe the



Figure 2: Transitions in a Discrete Time Logistic Model
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Discrete Time Logistic Model and the second part will describe how the estimated parameters
can be interpreted in terms of the location and the enforcement of the cut-off value.

To estimate a Discrete Time Logistic Model one needs data on the highest achieved level
of education, and the values of the explanatory variables. To estimate the effect of the
explanatory variables on each transition one makes an assumption about which transitions a
person must have passed in order to get to his highest achieved level of education. Figure 2
illustrates this assumption for four levels of education: no education, primary education,
secondary education, and tertiary education. Each person starts with no education and can
either obtain a diploma in primary education or leave the educational system. A person who
obtains a diploma in primary education is said to have passed the first transition, and a
person who leaves the educational system before obtaining a diploma in primary education
is said to have failed the first transition. The probability of passing the first transition is py
and the probability of failing is 1 — py. After obtaining a diploma in primary education, the
student can either obtain a diploma in secondary education or be content with his diploma
in primary education and leave. In other words: only students who have passed the first
transition are ‘at risk’ of passing the second transition, only they can either pass or fail the
second transition. Similarly, only students who have passed the second transition are at risk
of passing the third transition. Students who have obtained a diploma in tertiary education
have, in this example, a probability of one of leaving the educational system, since tertiary
education is the highest possible level education. So a person who reports that his highest
achieved level of education is secondary education is assumed to have passed the first and the
second transition and has failed the third transition.

The Discrete Time Logistic Model can be used to estimate the effects of variables, like
father’s socio-economic status, on the probabilities of passing the first, second and third
transition. Fach transition has only two possible outcomes: passing or failing the transition.
For each transition a dummy is created, which is zero for those students that have failed
that transition, one for those students that have passed the transition, and missing if those
students have failed one of the previous transitions. These dummies can be modelled using the
standard techniques for a binary dependent variable. Of these techniques, logistic regression



is most often used, both in the general application of this model in discrete time survival
analysis (Cox, 1972; Hosmer and Lemeshow, 1999), and in the application of this model to
educational transitions (Mare, 1980; Shavit and Blossfeld, 1993). Each transition is thus
represented by a logistic regression in order to estimate the effect of the explanatory variables
on the probability of passing that transition. By assigning ‘missing values’ to those students
that have failed one of the previous transitions, one can ensure that these logistic regression
are only estimated on students that have passed all previous transitions.

This means that the probability of passing a transition is represented by equation (1),
where Dy, is the dummy for transition k, x an explanatory variable, and Ggx and (1 are the
parameters for transition k& that are to be estimated. Equation (1) basically fits a curve like
figure 1 for each transition to the data. The estimated parameters determine the shape and
location of curves.

ePor+Bire

Pr(Dy =1|Dy-1 =1,2) = (1)

The parameters can be used to say something about the two aspects of selection — the
location of the cut-off point, and the enforcement of the cut-off point. Consider a single
transition, where the probability of successfully passing that transition is determined by x
through the logistic regression function (1). The value of (31 influence the steepness of the
curve, and enforcement is stronger if the curve is steeper. The exponential of the parameter
is easier to interpret. This is an odds ratio, i.e. the factor by which the odds change as a
result of a unit change in . Traditionally, only the odds ratio has been interpreted, even
though it represents only the strength of the enforcement of the cut-off value.

The estimated parameters can also be used to get an estimate of the location of the cut-
off point. The cut-off point is defined as the minimum status needed to pass if the cut-off
point would be perfectly enforced. When enforcement becomes stricter the function gravitates
towards the value of x where the probability of success is .5. This is a direct result of the fact
that logistic curves are symmetric around this point. This means that the cut-off point is the
status where the probability of success is 50%. If the probability of success is 50% than the
odds ratio of success is 1 and the log odds ratio is zero. Finding the location of the cut-off is
simply a case of solving By + f1x = 0, since equation (1) can be rewritten as a linear function
of the log odds ratio with the same fs. This means equation (2) represents the cut-off value.
Note that this estimate does not exist when [3; is zero, and that this estimate will become
unstable when 3 is close to zero. However, this makes substantive sense: it is very difficult
to see what the cut-off value is when it is not or very weakly enforced. Similarly a linear
trend in the location of the cut-off value is estimated by including a variable representing the
year of birth of the respondent (t). Solving 3y + 1z + (ot = 0 results in a trend according to
equation (3). This implies that a linear trend in the location of the cut-off value exist only
when there is no trend in the enforcement of the cut-off value. The strength of the enforcement
of the cut-off point remains unchanged over time, and is still represented by (1. A linear trend
in the enforcement of the cut-off value can be estimated by adding interaction term between x
and t. The location of the cut-off can now be found by solving Bg+ 12+ B2t + Bzt = 0, which
is shown in equation (4). A consequence of a linear trend in the enforcement of the cut-off
value is a non-linear trend in the location of the cut-off value. This leads to the following
conclusion: estimating a linear trend in the cut-off value implies estimating no trend in the
enforcement, and estimating a linear trend in the enforcement implies estimating a non-linear
trend in the location.

1 + eBor+Pirz
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however, the direction and size of the trends in both location and enforcement are largely
independent, even though the functional form of the trend in location or enforcement fixes
the functional form for the trend in the other parameter.! Consider for example a linear
trend in enforcement, which forces the trend in location to be equation (4). This trend is
either increasing or decreasing, and has a horizontal and a vertical asymptote. With a given
trend in enforcement, the parameters Gy and Py determine whether the trend in location is
increasing or decreasing, how fast it is increasing or decreasing, and the horizontal asymptote.
The trend in enforcement determines the vertical asymptote of the trend in location, i.e. the
location can not be determined when the enforcement is zero. The independence of the trend
in location and enforcement of the cut-off point is even clearer when both are estimated with
a discrete trend. This is done by dividing the respondents into different cohorts and, with the
use of dummy variables, estimate the cut-off values and the enforcement of the cut-off values
for each individual cohort. This amounts to estimating for each cohort an enforcement ((3;)
and a location (—%), so given an enforcement any location is possible. Any discrete trend in
both the location and the enforcement of the cut-off value are now possible, and the trend in
one does not depend on the trend in the other.

So, trends in location and enforcement can be estimated with the conventional Discrete
Time Logistic Model. The only difference is the interpretation of the parameters. Tradition-
ally one has only considered the odds ratio, which is a measure of the enforcement of the
cut-off point, and ignored the location of the cut-off point. This section has shown how the
location of the cut-off point can also be extracted from the parameters. It has also shown
that the functional forms of the trends in the location and enforcement of the cut-off point
are connected. One assumes that there is no trend in the enforcement of the cut-off point
whenever one estimates a linear trend in the location of the cut-off point, and one assumes
that there is a nonlinear trend in the location of the cut-off point whenever one estimates a
linear trend in the enforcement of the cut-off point. The sign and size of the two trends are
however largely independent.

3 Data and results from the Netherlands

The non-linearity of the estimated trend in the location of the cut-off point due to linearity of
the estimated trend in the enforcement of the cut-off point can best be illustrated with data
that spans a long period of time. Selection on father’s status in the Netherlands is in this
respect a good example since there is data spanning almost one hundred years. Empirical
research on selection on father’s status in education and a possible trend in selection has a long
history (see: (Ganzeboom et al., 1991) and (Treiman and Ganzeboom, 2000) for a review). It
has also sparked a fair amount of theories predicting a decline in selection on father’s status,

! An obvious exception is a linear trend in location, which forces the trend in enforcement to be zero.



e.g. modernization theory (Blossfeld and Shavit, 1993; Rijken, 1999), the age effect and
educational expansion (Mare, 1981), no decline in this type of selection, e.g. Relative Risk
Aversion (Breen and Goldthorpe, 1997; Goldthorpe, 1996), or a decline in this type of selection
if certain conditions are met, e.g. Human Capital Theory (Becker and Tomes, 1979, 1986;
Becker, 1989), and Maximally Maintained Inequality (Raftery and Hout, 1993). Selection
on father’s status is interpreted as inequality of educational opportunity. However, both the
empirical and the theoretical literature have ignored the distinction between the location and
the enforcement of the cut-off value, while these two aspects of selection have very different
interpretations. Lowering the enforcement of the cut-off value reduces inequality since those
students who do not meet the ‘required level of father’s status’ are less disadvantaged, while
those students that meet the required level are less advantaged, so father’s status has become
increasingly irrelevant. Lowering the location of the cut-off value reduces the consequences
of inequality since more students meet the ‘required level of father’s status’, so less students
suffer from the selection process.

A Discrete Time Logistic Model will be estimated using data from the Netherlands from
respondents that were born between 1880 and 1975. The data come from the International
Stratification and Mobility File (ISMF) (Ganzeboom, 2004). The data for the Netherlands
consists of 41 surveys, held between 1958 and 2000. These different surveys were merged to
increases the number of respondents and the time-span covered, and to diminish the effect
of idiosyncracies of individual surveys. The job of the father is measured in ISEI scores
(Ganzeboom and Treiman, 2003). The original ISEI score is a continuous variable ranging
from 10 to 90, but it has been recoded to range from 1 to 9. The average of the recoded
variable has increased over time from about 3.5 to 4.5. Time has been measured by the year
of birth for the respondents, which ranges from 1880 to 1975. This variable has been recoded
to range from -0.2 to 0.75, so a unit change in the variable birthyear is equivalent to one
hundred years. The level of education is measured by the highest achieved level of education.
Figure 3 shows how the proportions of respondents for each level of education has developed
over time. The graph is more erratic in the early years since they are based on a lot less
observations (10-20 compared to a maximum of 2,267 for cohort 1942). It shows that lower
education (LO) has declined sharply as highest achieved level of education, while HAVO,
VWO, MBO (primarily MBO) and HBO and WO have become more important. In order to
estimate a Discrete Time Logistic Model, assumptions have to be made about the transition
structure. These assumptions are presented in figure 4. The resulting proportions of successes
and the number of respondents at risk at different cohorts are reported in table 1. It shows
the proportions of successes during the first two transitions have increased substantially.
Interestingly, the proportion of successes have remained approximately constant for the third
transition. However, the number of students at risk has greatly increased due to the increased
probability of passing the first two transitions. So, the number of students going to higher
tertiary education has still risen sharply even though the proportion of students continuing to
higher tertiary education has remained constant. Table 1 also shows that the cohort 1880-1895
should be treated with care because it contains few respondents. Furthermore, the proportion
of failures in the first transition has become very small in recent cohorts.

A Discrete Time Logistic Model with a linear trend in the enforcement of the cut-off value,
and a Discrete Time Logistic Model with dummies for the different cohorts has been estimated
using this data. The estimated parameters are shown in tables 2 and 3 in appendix A. These
parameters are transformed to the parameters of interest — trends in the enforcement and
location of the cut-off value. The results are shown in figure 5. For instance, applying



Table 1: proportion of successes and number of children at risk

transition 1 transition 2 transition 3
cohort proportion n® | proportion n® | proportion n®
1880-1885 0.15 70.4 0.72 10.8 0.74 7.8
1885-1890 0.25 116.3 0.28 28.9 0.90 8.2
1890-1895 0.22 240.3 0.32 53.4 0.61 17.3
1895-1900 0.27 465.3 0.41 127.5 0.41 52.3
1900-1905 0.35 754.8 0.43 263.9 0.45 113.9
1905-1910 0.41 1196.1 0.38 489.1 0.49 187.7
1910-1915 0.43 1666.7 0.40 718.6 0.42 291.0
1915-1920 0.53  2199.1 0.43 1176.0 0.43 501.0
1920-1925 0.61  3074.9 0.45 1877.1 0.39 852.9
1925-1930 0.64 3792.1 0.46  2417.6 0.43 1104.9
1930-1935 0.70  4447.3 0.46  3128.7 0.45 1454.3
1935-1940 0.79 4734.6 0.49 3733.7 0.47 1813.5
1940-1945 0.84  5826.0 0.50  4902.9 0.47  2434.6
1945-1950 0.88 73149 0.53  6449.7 0.46 34114
1950-1955 0.91  6463.7 0.60  5883.9 047  3554.7
1955-1960 0.95  6090.6 0.66  5762.8 0.45  3822.6
1960-1965 0.96  5147.2 0.70  4957.2 0.42  3490.2
1965-1970 0.97  3456.5 0.76  3346.3 0.42 25434
1970-1975 0.98  1060.1 0.78 1037.3 0.44 813.8
total 0.80 58116.8 0.57 46365.5 0.45 26475.5

¢ fractions are the result of sampling weights



Figure 3: Trend in the distribution of highest achieved level of education
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equation (4) to the estimates for the first transition in table 2 means that the cut-off value
for father’s status (fisei) is — _O?é?ﬁl_%igixb?ﬁfxﬁr, which is the solid line in the upper left
graph of figure 5. The solid line in the lower left graph, representing the enforcement of the
cut-off point, is 0-614-0-489xbirthyear " The firgt transition shows a clear and strong downward
trend in both the location and the enforcement of the cut-off value. The cut-off value has
even left the range of father’s status (1 till 9). The reason for this is that almost everyone
passes the first transition. The cut-off value is not only the minimum value of fisei needed
to pass the level if this value was perfectly enforced, but also the value at which 50% of the

children pass if enforcement is not perfect. The downward trend in both the location and the




enforcement of the cut-off value is less extreme for the second transition, although the trend
in cut-off value is still very strong. The cut-off value has moved from almost the maximum
value to almost the minimum value. The trend during the third transition is for both the
cut-off value and the enforcement of the cut-off value slightly positive. Results from earlier
studies assessing the enforcement of the cut-off value in the Discrete Time Logistic have also
shown a large effect of father’s status during the first transition, and ever smaller effects for
subsequent transitions (Mare, 1980, 1981; Shavit and Blossfeld, 1993).

The striking point is that trends in the location and the enforcement of the cut-off point
show a remarkable similar pattern. The similarity of trends in enforcement and location of
the cut-off value looks suspicious. In the previous section it was analytically shown that
especially the two estimated discrete trends are independent. This means that the similarity
in trend is an empirical finding and not an artefact of the model. Several simulations were
run to see if this similarity in trends also occurs in simulated datasets with dissimilar ‘true’
trends, to further test this assertion. The results presented in Appendix B show that different
trends in location and enforcement of the cut-off point can be estimated. This is even the
case if the model is somewhat misspecified. This gives additional support for the conclusion
that the similarity in trend is an empirical finding and not an artefact.

4 Conclusion

This paper promised to answer two questions. 1) How can the location and the enforcement
of the cut-off point and a trend in these values be measured? 2) What are the trends in
enforcement and location of the cut-off in the Netherlands for the birth-cohorts 1880-19757
The answer to the first question is that the both enforcement and the location of the cut-
off values can be estimated using conventional Discrete Time Logistic Model, using simple
transformations of the parameters. The enforcement can be measured with the usual odds
ratio, and the cut-off value can be measured with the transformation in equation. These
transformations have also led to the conclusion that the functional form of the trend in the
location and the enforcement of the cut-off value are connected. There can only be a linear
trend in the location if there is no trend in the enforcement, and there is a nonlinear trend in
the location if there is a linear trend in the enforcement. The answer to the second question is
that there are strong negative trends in both the location and the enforcement of the cut-off
value during the first transition, the trends during the second transition are still negative
but less strong than during the first transition, and the trends are slightly positive during
the third transition. So educational opportunities have become more equal during the first
two transitions and have become slightly less equal in during the last transition. Another
conclusion is that the trends in the location and the enforcement of the cut-off point are
surprisingly similar. Analytical results and simulations show that the Discrete Time Logistic
Model is capable of estimating different trends in location and enforcement, so the similarity
in the trends seems to be a new empirical finding.



Figure 5: Trends in cut-off point and enforcement of the cut-off point
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A Parameter estimates

Table 2: linear trend in the enforcement of cut-off point

transition 1 transition 2 transition 3

b Z b Z b zZ
fisei 0.614 32.00 | 0.446 22.35 | 0.252 9.80
birthyear 8176 40.13 | 3.472 1839 | -0.382 -1.51
fisei*birthyear | -0.489  -9.73 | -0.147  -3.56 | 0.048 0.97
Constant -3.341 -43.03 | -2.919 -31.73 | -1.303 -10.03
log likelihood | -26439 -34929 -21116
df 3 3 3
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Table 3: dummy trend

transition 1

transition 2

transition 3

b zZ b zZ b z
fisei(1880-1895) 0.686 8.48 | 0.320 2,55 | 0.401  2.00
fisei(1895-1910) 0.567 18.86 | 0.466 10.32 | 0.114 1.82
fisei(1910-1915) 0.537 14.87 | 0.464 9.58 | 0.123 1.83
fisei(1915-1920) 0.507 15.52 | 0.396 10.00 | 0.192  3.47
fisei(1920-1925) 0.526 18.19 | 0.358 11.87 | 0.320 7.59
fisei(1925-1930) 0.486 18.46 | 0.388 14.34 | 0.280 7.69
fisei(1930-1935) 0.433 17.40 | 0.365 1593 | 0.314 9.97
fisei(1935-1940) 0.456 16.41 | 0.370 17.38 | 0.307 10.71
fisei(1940-1945) 0.366  13.81 | 0.372 19.90 | 0.297 12.05
fisei(1945-1950) 0.310 12.07 | 0.379 23.06 | 0.287 13.71
fisei(1950-1955) 0.389 11.90 | 0.368 20.54 | 0.252 12.31
fisei(1955-1960) 0.393 9.19 | 0.372 1991 | 0.289 14.71
fisei(1960-1965) 0.239 4.69 | 0375 1823 | 0.267 13.15
fisei(1965-1970) 0.344 5.06 | 0.328 12.24 | 0.290 11.73
fisei(1970-1975) 0.521 3.10 | 0.362 740 | 0.280 6.64
cohort 1895-1910 | 1.316 3.46 | -0.483 -0.71 | 0.423 0.39
cohort 1910-1915 | 1.737 4.49 | -0.430 -0.63 | 0.170 0.16
cohort 1915-1920 | 2.232 5.85 | 0.027 0.04 | -0.091 -0.09
cohort 1920-1925 | 2.523 6.72 | 0.387 0.58 | -0.867 -0.83
cohort 1925-1930 | 2.767 742 0.235 0.36 | -0.431 -0.42
cohort 1930-1935 | 3.300 8.89 | 0401 0.61 | -0.541 -0.52
cohort 1935-1940 | 3.659 9.79 | 0453 0.69 | -0.454 -0.44
cohort 1940-1945 | 4.301 11.53 | 0.517 0.79 | -0.322 -0.31
cohort 1945-1950 | 4.799 12.84 | 0.581 0.89 | -0.364 -0.35
cohort 1950-1955 | 4.805 12.62 | 0.955 147 | -0.161 -0.16
cohort 1955-1960 | 5.365 13.56 | 1.190 1.82 | -0.446 -0.44
cohort 1960-1965 | 6.376  15.23 | 1.324  2.03 | -0.458 -0.45
cohort 1965-1970 | 6.009 13.21 | 1.812 2.75 | -0.607 -0.59
cohort 1970-1975 | 5.852 7.88 | 1.807 2.64 | -0.525 -0.50
Constant -3.995 -11.11 | -2.061 -3.18 | -1.109 -1.09
log likelihood -26419 -34802 -21057
df 29 29 29
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B Simulation Results

One issue is whether the Discrete Time Logistic Model can distinguish trends in location
and enforcement of the cut-off point. Simulation is one way to assess whether these different
trends can be disentangled. A dataset was created with 10,000 ‘observations’? whereby each
observation received a value of x as a draw from a standard normal distribution and a value
of ¢t as a draw from a uniform distribution between 0 and 1. These values of x and ¢ where
used to determine the probability that the individual passed a transition. The probability of
successfully completing each transition conditional on having passed the previous transition is
represented in equation (5). Note that there is no interaction term between ¢ and x, so there
is a linear trend in the location of the cut-off point but no trend in the enforcement. Whether
or not an individual passed a transition was determined at random, given the calculated
probability of success. After the data was generated in this way, the parameters were re-
estimated using a Discrete Time Logistic Model with z, ¢, and an interaction term between x
and t. The difference in the location and the enforcement when t = 1 and ¢ = 0 is recorded.
The data were created in such a way that the true values are 0.5 for the change in location
and 0 for the change in enforcement. This process was repeated 1,000 times, and the results
are presented in figure 6. This figure shows that the results are centered around their true
value during each transition, and that the spread has increased over the transitions. This last
finding is easily explained by the fact that each higher transition will contain less observations.
So, this simulation shows that different trends in location and enforcement of the cut-off value
can be disentangled if the Mare-model is correctly specified.

€.5+J:+.5t

Pr(Dy =1Dg_1 =1) = 14 edtatst 5)

This begs the question whether this is also true if the model is somewhat incorrectly
specified, for instance if a third variable is erroneously left out of the model. To answer
this question datasets were created using the conditional probabilities of passing a transition
as represented by equation (6). Equation (6) shows that a third variable (z2) influences
the probability of success, but this variable will be ignored during estimation. This creates
unobserved heterogeneity. The same Discrete Time Logistic Model as before, which is now
misspecified, was estimated on these datasets. The results are shown in graph 7. The trends
in location and enforcement of the cut-off value remain remarkably accurate, even in the
misspecified model. So, the Discrete Time Logistic Model can disentangle trends in location
and enforcement of the cut-off value even if it is somewhat misspecified.

e.5+x1+.5t+a:2

Pr(Dy =1|Dp—1 =1) = 1 + e5tai+5i+zs (6)

2The dataset which will used in the empirical example contains approximately 40,000 observations.
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Figure 6: Simulation results when model is correctly specified
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Figure 7: Simulation results with an omitted variable
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C Studies part of ISMF

name of study? men women  Total
net58 662 807 1,469
net67t 245 302 547
net70 1,230 1,020 2,250
net71 1,202 995 2,198
net74p 622 622 1,244
net76j v 136 853
net77 2,290 2,277 4,568
net77e 991 1,112 2,103
net79p 952 932 1,884
net8le 1,232 1,427 2,659
net82e 839 935 1,773
net82n 1,374 1,397 2,771
net82u 601 306 907
net850 1,586 1,520 3,106
net86e 915 1,005 1,920
net861 2,143 2,274 4,417
net87i 1,032 1,198 2,230
net87j 484 495 979
net87s 533 553 1,085
net88o 1,053 804 1,857
net90o 919 727 1,646
net90s 1,419 1,306 2,725
net91j 1,113 999 2,112
net92f 1,147 1,098 2,245
net92o 844 720 1,564
net94e 994 1,135 2,129
net94h 641 604 1,245
net94o 689 653 1,343
net95h 1,311 1,278 2,590
net95y 890 827 1,717
net96 461 466 927
net96¢ 984 1,290 2,275
net960 981 925 1,906
net96y 256 350 606
net98 580 546 1,126
net98e 1,209 1,283 2,492
net98f 1,263 1,272 2,535
net98o 1,400 1,175 2,574
net99 1,798 1,336 3,134
Total 39,603 38,108 77,711

“A more detailed description of these studies can
be found at (Ganzeboom, 2004)
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