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Abstract 
In a much cited overview article Mood (2010) criticized many of the ways in which the raw 

coefficients and odds ratios from logistic regression have been used. However, logistic regression has 

an unusual dependent variable: a probability, which measures how certain we are that an event of 

interest happens. This degree of certainty is a function of how much information we have, which in 

case of logistic regression is captured by the variables we add to the model. If the dependent variable 

is interpreted in that way many of the problems with logistic regression pointed out by Mood (2010) 

turn out to be desirable properties of the logistic regression model. 

Introduction 
Since the appearance of the overview article by Mood (2010) there has been a growing concern 

within sociology that the odds ratio can no longer be used in research. In particular Mood (2010, pp. 

67-68) concluded that: 

1. “It is problematic to interpret log-odds ratios or odds ratios as substantive effects, because 

they also reflect unobserved heterogeneity 

2. It is problematic to compare log-odds ratios or odds ratios across models with different 

independent variables, because the unobserved heterogeneity is likely to vary across models. 

3. It is problematic to compare log-odds ratios and odds ratios across samples, across groups 

within samples, or over time – even when we use models with the same independent 

variables – because the unobserved heterogeneity can vary across the compared samples, 

groups, or points in time.”  
                                                             
1 I thank Michelle V. Jackson, Sebastian E. Wenz, Frank Popham, and Richard T. Campbell for useful comments.  
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In this article I will argue that the first and the last of these problems actually represent desirable 

properties of the logistic regression model if one interprets the dependent variable, the probability, 

as an assessment of how likely it is that the event of interest happens.  

An example of a set of topics where this interpretation makes sense is inequality of opportunity. In 

such studies we want to quantify how likely we think it is that someone with a given background 

attains a desirable position, and the extent to which these assessments differ across backgrounds 

measures inequality of opportunity. However, if one has a (rational choice) theory involving a latent 

propensity that guides individual choices, and one is interested in structural effects on this latent 

propensity, then it makes more sense to interpret the results in terms of that latent propensity 

rather than in terms of odds or probabilities. So one cannot arbitrarily choose the most convenient 

interpretation of the dependent variable; it is a choice that is predetermined by the research 

question.   

I will start with a general description of the logistic regression model, followed by a description of the 

problems discussed by Mood (2010) and others (for example: Allison, 1999; Auspurg & Hinz, 2011; 

Gail, Wieand, & Piantadosi, 1984; Karlson, Holm, & Breen, 2012; Lee, 1982; Neuhaus & Jewell, 1993; 

Norton, 2012; Pang, Kaufman, & Platt, 2013; Williams, 2009; Wooldridge, 2010). I will then discuss 

why many of these “problems” are not problems at all if one interprets the dependent variable as a 

degree of plausibility2, and when such an interpretation could be useful. 

Logistic regression 
There are two ways in which one can think about the logistic regression model (for example: Long, 

1997; Maddala, 1986). The first way starts with the observation that a probability is a number 

between zero and one, and if we just used a linear regression on a probability we could easily end up 

with predictions outside that range. With logistic regression we apply the logit transformation to the 

probabilities, meaning that we have a linear model for the log-odds of success instead of the 

probability of success. This is shown in equation (1) where y is the binary dependent variable, P(y=1) 

is the probability that the dependent variable takes the value 1, the xs are the explanatory variables 

and the s their effects.  

 ln
( = 1)

1 − ( = 1)
= + +   (1) 

                                                             
2 I will use degree of plausibility as a general term the assessment of how likely it is that an event occurs, and 
consider probabilities, odds, and log odds as different but equivalent ways of quantifying a degree of 
plausibility. 
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The odds can be interpreted as the expected number of “successes” per “failure”, and the log-odds is 

the logarithm of that. The log-odds has no upper or lower bound, so a linear model cannot give 

invalid predictions. Moreover, the exponentiated coefficients can be interpreted directly as odds 

ratios, that is, the ratio by which the odds change per unit increase in the explanatory variable. 

This can also be seen as a way of fitting an “S-shaped” effect of the explanatory variables on the 

probability of success, as equation (1) can be rewritten as equation (2). This way the predicted 

probabilities from a logistic regression model are guaranteed to remain within the allowable range 

for probabilities. 

 
P(y = 1) =

exp( + + )
1 + exp( + + )  (2) 

The second way of thinking about logistic regression is to assume that there is an unobserved latent 

propensity to experience an event. If that latent propensity passes a threshold (typically 0) then the 

event will occur. What is observed is whether or not the event occurs and not the propensity. The 

latent variable is influenced by the explanatory variables and an error term, as in equation (3), where 

y* is the latent propensity and  is the error term.  

 ∗ = + + +  (3) 

The probability of experiencing the event is in this model the probability that the latent propensity is 

larger than zero, which according to equation (3) can be written as 

 ( = 1) = ( + + + > 0) (4) 

Since both the s and the xs are fixed, the only uncertain part is the error term. As a consequence 

equation (4) can be rewritten as equation (5):  

 ( = 1) = ( > −[ + + ]) (5) 

The probability that a random variable, in this case , is larger than some number can be derived 

from the cumulative distribution function. If we assume that the error term follows a logistic 

distribution with mean 0 and a variance equal to 3, then equation (5) will become equation (2), 

thus leading to logistic regression.  

The problem 
One characteristic of logistic regression that has troubled many authors (for example: Allison, 1999; 

Auspurg & Hinz, 2011; Gail et al., 1984; Hauck, Neuhaus, Kalbfleisch, & Anderson, 1991; Lee, 1982; 
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Mood, 2010) is that if we add a variable to a logistic regression model, the effects of the other 

variables will change, even if this additional variable is uncorrelated with the other explanatory 

variables. This is problematic because control variables are added to a model to adjust for possible 

confounders. If a variable is not correlated with another explanatory variable, then it cannot be a 

confounder, and we would like the effects of our explanatory variables of interest to not change 

when adding these “non-confounders”. The property of logistic regression that the effects do change 

when adding a “non-confounder” is typically explained with the presence of unobserved 

heterogeneity.  

The simplest version of this explanation starts with the latent variable representation of the logistic 

regression model. As discussed above, the dependent variable in that representation of logistic 

regression is a latent propensity to experience the event. The fact that the dependent variable is 

latent means that the unit is unknown; it does not have a known scale like meters, euros or minutes. 

Instead the unit of that latent variable is fixed by fixing the variance of the error term. So if 

something changes the residual variance, then that also changes the scale of the dependent variable. 

One way to change the residual variance is to add a new explanatory variable to the model. That new 

variable was previously part of the residual. So adding that variable to the regression reduces the 

residual variance (assuming the explanatory variable is uncorrelated with the error term). The scale 

of the dependent variable thus changes by adding a variable to our model.  

This is pretty damning; if the scale of the dependent variable changes then a comparison of 

coefficients becomes meaningless. If the scale of the dependent variable is so dependent on which 

control variables you add, even if those control variables are uncorrelated with the explanatory 

variable of interest, then how can the coefficient of a logistic regression represent the effect of a 

variable? This is the basis for Mood’s first claim that it is problematic to interpret log-odds ratios or 

odds ratios as substantive effects and second claim that it is problematic to compare across models 

with different independent variables. 

This problem also affects comparisons of logistic regression coefficients across groups. To borrow an 

example from Allison (1999): Say, we are estimating one logistic regression to explain some labor 

market outcome for men and another for women. He makes a plausible argument that women’s 

career paths and labor market experiences tend to be more variable than those of men, leading to a 

residual variance that is larger for women than for men. As a consequence the scale of the 

dependent variable in the sample of men is different from the scale of the dependent variable in the 

sample of women. This is the basis for Mood’s third claim that it is problematic to compare log-odds 

ratios or odds ratios across groups. 
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The biggest problem is that the scale of latent dependent variable changes when the residual 

variance changes. There is an easy solution to that, as there is another way of looking at logistic 

regression: logistic regression models linear effects of explanatory variables on the log-odds of 

experiencing the event. So in that interpretation the dependent variable is no longer a latent variable 

but the log-odds. That scale is known: the logarithm of the odds, which is the logarithm of the 

expected number of “successes” per “failure”. This scale does not change when we add or remove 

variables from our model and it is the same across groups.  

However, this does not solve everything: the effects, the odds ratios, will still change if you add an 

unconfounding variable. Adapting a numerical example by Buis (2011): Say we have two countries, A 

and B, and within each country we look at the effect of a binary variable x on a binary variable y, as 

described in Table 1. These cross tabulation make for convenient examples, as the parameters of 

logistic regression model can be easily computed by hand: The odds of getting a high y is larger in 

country A compared to country B, but in both countries the odds of getting a high y is three times 

larger for high x individuals compared to low x individuals. This factor three is the odds ratio one 

would get in a logistic regression model. Another important feature of this example is that the 

distribution of x is the same in each country, so country is not a confounding variable.   

 

Table 1: Hypothetical example while controlling for country 

  y N probability odds Odds 

ratio 

country x Low High     

A 
Low 200 200 400 .5 1 

3 
High 100 300 400 .75 3 

B 
Low 300 100 400 .25 .333 

3 
High 200 200 400 .5 1 

 

If one were interested in the effect of x and had used a linear regression then it would not matter 

whether one controlled for country or not, as country and x are in this example completely 

uncorrelated. However, this is not true with logistic regression. Not controlling for country means 

collapsing Table 1 to Table 2: If we do not want to control for country then it is sufficient to know 
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that there are 300 + 200 =500 observation with low x and low y, 200+100=300 observations with low 

x and high y, etc. When we do that the odds ratio drops from 3 to 2.778. The reason for that change 

in effect of x is that collapsing a table means averaging the probabilities. For example the probability 

of being a high y given a low x in countries A and B is respectively 200/400=.5 and 100/100=.25. After 

collapsing Table 1 to Table 2 the probability of being a high y given a low x is 300/800 = (.5 + .25)/2 = 

.375. However, with logistic regression we work with odds and odds ratios, and these are non-linear 

transformations of probabilities. So averaging probabilities does not correspond to averaging odds. 

To continue the example: (1+.333)/2=0.667≠0.6. 

 

Table 2: Hypothetical example without controlling for country 

 Y N probability odds Odds ratio 

x Low  High     

Low  500 300 800 .375 0.6 
2.778 

High 300 500 800 .625 1.667 

 

So even though the scale of the dependent variable is comparable across models and groups, the size 

of the effect is still dependent on which variables were added to the model even if those added 

variables are non-confounding variables. In particular, in the model without the extra variable the 

probabilities tend to be less extreme (more in the middle and further away from either one or zero), 

and the effects are thus smaller compared to the model with the extra variable (Neuhaus & Jewell, 

1993). 

A solution 
Much of the effort in this area has focused thus far on removing the effect of non-confounding 

variables, by for example using average marginal effects or linear probability models (Auspurg & 

Hinz, 2011; Mood, 2010), using standardized regression coefficients (Karlson, 2015; Winship & Mare, 

1984), or directly estimating the degree of heterogeneity and controlling for it (Allison, 1999; 

Williams, 2009). However, what does this effect of unconfounding variables mean and is it always 

desirable to remove it? 
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Consider the meaning of the dependent variable in a logistic regression: In a pure mechanical sense 

logistic regression models the proportion of successes. But often this proportion is given the 

additional meaning of chance, that is, someone’s assessment of how likely it is that an individual will 

experience an event. In general a chance involves a person who has a statement about which he or 

she has a given set of evidence that entitles him or her to be absolutely sure that the statement is 

true, or absolutely sure that the statement is false, or somewhere in between. A probability 

measures her or his  “degree of rational believe” (Keynes, 1921 [2004]), or degree of “partial assent” 

(Cox, 1946), or “degrees of plausibility” (Jaynes, 2003). So if we use logistic regression as a model for 

a chance, then what is the statement we are uncertain about? We are not uncertain about the 

persons in our dataset, as we have already observed whether or not they experienced the event we 

are interested in. Instead, we imagine a person with the same characteristics as a person in the 

dataset but for whom it is unknown whether or not he or she experienced the event3. We use the 

predicted proportion of persons with those characteristics that experienced the event as our 

measurement of the degree of plausibility that this new person experiences the event.  

This way of looking at probabilities as a degree of plausibility means it is not an absolute property, 

but is conditional on the information available; if someone learns more, then her or his assessment 

should change. (Keynes, 1921 [2004]) If the chance is measured as a probability, with zero meaning 

absolute certainty our statement is false, one meaning absolute certainty that the statement is true, 

and higher intermediate value representing higher chance that the statement is true, then the more 

(mutually consistent) information we have, the surer we are, the closer the probabilities should be to 

either zero or one.  

In logistic regression the “available knowledge” translates to the set explanatory variables included in 

the model. So the degree of plausibility is defined by the choice of control variables rather than 

something that exists outside the model. This links back to the scale of the latent variable being 

dependent on which control variables are added to the model. However, instead of this dependence 

being a problem, it is now a desirable property of the logistic model in the sense that the 

probabilities we get out of a logistic regression react to new information (new variables) as one 

would expect. In particular, as one adds new variables, and thus becomes surer about the outcome, 

the effects of the remaining variables tend to increase. This property was illustrated in the example 

from tables 1 and 2. 

This way of thinking about probability not only involves an effect of extra information on 

probabilities, but also a change in the effects of variables on probabilities due to adding extra 
                                                             
3 If we have continuous characteristic in our model finding such a similar person may involve interpolation or 
extrapolation, but the basic argument remains the same. 
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information. Before adding extra information, we will be less sure, and thus the probabilities should 

be further away from zero and one, which means they should be closer together. An effect on 

probabilities is a comparison of these probabilities. If the probabilities are forced to be closer 

together due to less information being available, then the effects have to smaller; there is less room 

for variables to have an effect compared to after adding extra information. So not only should one 

expect the probabilities to change in reaction to extra information, but also effects on that 

probability. This means that adding unconfounding variables should increase the effect of other 

variables, which is exactly what happens in logistic regression. 

 Since a change in effects due to adding unconfounding variables can be desirable, methods and 

models that do not have that property can become problematic. For example, both the linear 

probability model and average marginal effects are not influenced by unconfounding variables, and 

thus cannot measure effects on probabilities as conceived of above. In fact, exactly because they are 

not influenced by unconfounding variables they were previously put forward as “solutions” (Auspurg 

& Hinz, 2011; Mood, 2010). Since the problem disappeared by changing the interpretation of the 

dependent variable, the solutions became problems. 

A comparison of effects across groups is also influenced by this interpretation of the dependent 

variable. If one group is more predictable than another, then that should lead to larger effects in the 

more predictable group. The logic is the same as with adding an unconfounding variable: In a group 

where one is less sure the range of possible predicted probabilities should be more restrictive 

(further away from zero or one) compared to a group where one is surer. As a consequence there is 

more room for a variable to have an effect in a group where one is surer. Consider again the example 

by Allison (1999) where we investigate the difference between men and women in effect of a 

variable on the probability of some labor market outcome. The labor market experiences tend to 

more predictable for men than for women. This should make the effects of variables for men larger 

than those effects for women. As was discussed above the logistic regression model has exactly this 

characteristic. So rather than that being a problem, this is again a desirable characteristic and a 

comparison of odds ratios across groups will thus give an accurate description of differences in 

effects across these groups.  

Mood (2010) also considered the comparison of coefficients across models with different 

explanatory variables problematic. Such a comparison is typically done to quantify the indirect effect 

of a variable. For example, we may want to know how much of the effect of parental background on 

the probability of entering university can be explained by the fact that children with a privileged 

parental background tend to perform better at school prior to entering university, and those children 

that performed better at school are more likely to enter university. In a linear regression model we 
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could just estimate two models: one with just parental background and one with parental 

background and prior academic performance. The difference in effect of parental background 

between these models quantifies the indirect effect of parental background on entering university 

via prior academic performance. However, this trick does not work with logistic regression: If adding 

a variable should change the effect of parental background regardless of whether it is correlated with 

family background, then the comparison of coefficients between models with and without the 

intervening variables is not a good way of quantifying the indirect effect. Instead one can scale the 

effects in both models such that they refer to the uncertainty present without adding the intervening 

variables (Buis, 2010; Erikson, Goldthorpe, Jackson, Yaish, & Cox, 2005) or scale the effects in both 

models such that they refer to the uncertainty present when also adding the intervening variables 

(Karlson et al., 2012). Either can be reasonable. The logic behind the former is that the explanandum 

is the total effect, which is the effect of the variable of interest without adding the intervening 

variables. The logic behind the latter is that the intervening variable is part of the model, so the 

uncertainty that remains after adding the intervening variable is the relevant amount of uncertainty. 

A consequence of that is that the total effect using the method by Karlson et al. (2012) will differ 

depending on which intervening variables one wants to model. So if one wants to compare indirect 

effects for different intervening variables then that would be easier using the method by Erikson et 

al. (2005) or Buis (2010). 

So, even though the coefficients are exactly the same regardless of whether we consider the logistic 

regression as a model of a latent variable or as a model of a chance, the interpretation of the 

coefficients are very different. So much so, that changing the interpretation of the dependent 

variable to a degree of plausibility solves some of the problems with logistic regression. If the 

solution is that easy, then why wouldn’t we always choose the chance interpretation of logistic 

regression? To be more precise, when would a chance interpretation of logistic regression be 

appropriate? Let’s start with the alternative: the latent variable interpretation. Its main strength is 

that it can easily incorporate theory of individual behavior involving rational choice and utility 

maximization. If one is interested in testing such a theory, then the latent variable interpretation is 

the most sensible choice. In a latent variable interpretation one thus tries to reconstruct the process 

through which the individuals in the data came to make the decision they made. There are many 

research question, where this is exactly what one wants to do. 

If one interprets the dependent variable as a chance, then one no longer talks about the persons in 

the data, as we already observed whether or not they experienced the event of interest, and there is 

thus no uncertainty. Instead with the chance interpretation of logistic regression we talk about 

similar persons for whom we don’t (yet) know whether they will experience the event of interest or 
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not. A logical application of this way of thinking would be the evaluation of some treatment or 

intervention, as there the interest is often in whether or not this treatment or intervention should be 

applied more often. So in those cases we are interested in a reasonable assessment of how likely it is 

that a positive outcome occurs, and in particular to what extent that chance improves (or 

deteriorates) when a person receives a given treatment.  

Within sociology another set of questions that would fit well in this framework would be questions 

involving “inequality of opportunity”. Here we look at a society and consider the extent to which they 

offer all its members the same chances of attaining favorable positions regardless of their 

background. So inequality of opportunity is all about persons who do not have attained that 

favorable position yet, but have a chance to do so and in particular the differences in these chances 

across groups.   

 

Summary and conclusions 
There has been a long discussion on whether the influence of unobserved heterogeneity makes the 

interpretation of logistic regression coefficients problematic. Mood (2010, pp. 67-68) summarized 

that discussion by naming three problems: 

1. “It is problematic to interpret log-odds ratios or odds ratios as substantive effects, because 

they also reflect unobserved heterogeneity 

2. It is problematic to compare log-odds ratios or odds ratios across models with different 

independent variables, because the unobserved heterogeneity is likely to vary across models. 

3. It is problematic to compare log-odds ratios and odds ratios across samples, across groups 

within samples, or over time – even when we use models with the same independent 

variables – because the unobserved heterogeneity can vary across the compared samples, 

groups, or points in time.”  

This article adds to this debate by stating that unobserved heterogeneity does have the effects as 

summarized by for example Mood (2010) and Auspurg and Hinz (2011), but that that does not have 

to be a problem and can actually be desirable. The key difference with previous contributions is that 

focusses on finding research problems where these problems do not occur. These non-problematic 

research problems have in common that their dependent variable is the degree of plausibility – that 

is, an assessment of how likely it is that an event occurs – instead of a latent propensity. A degree of 

plausibility should be dependent on the information available for making such an assessment; the 

more (mutually consistent) information we have the surer we are. In logistic regression the set of 
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explanatory variables represents the information used for making such an assessment. So adding 

variables to a model that predicts a degree of plausibility should result in different coefficients.  

To be more precise, consider what one would expect if one adds an additional variable z, and that 

variable is relevant for predicting a probability. In that case one will be more certain after adding it. 

In other words, the probabilities should be closer to either zero (I am more certain that the event 

does not happen) or one (I am more certain that the event does happen). This should also influence 

the effect of other variables. Say I am interested in the effect of a variable x. Before adding the 

additional variable z the predicted probabilities should be further away from either zero or one 

compared to after adding that additional variable. As a consequence, all the predicted probabilities 

will be closer together before adding z than after adding z; there is less room for the variable x to 

have an effect before adding z than after adding z. So adding the additional variable z should increase 

the effect of a variable, even if x and z are uncorrelated. The log-odds ratios and odds ratios from a 

logistic regression show exactly this behavior. So Mood (2010) was right when she noted in the first 

problem that these coefficients are dependent on which variables are included in the model even if 

those additional variables are uncorrelated with the variables of interest, but that property of logistic 

regression can actually be desirable instead of a problem. 

The size of the effect on a degree of plausibility is a function of how certain we are that the event of 

interest happens. This degree of certainty can change by adding a variable as discussed above, but it 

can also differ from group to group. Here we would expect stronger effects in groups where we are 

more certain. Within groups were we are more certain the predicted probabilities can get closer to 

zero or one, so there is more room for a variable to have an effect. Logistic regression coefficients 

have exactly this property, as can be most clearly seen in the latent variable representation of logistic 

regression. So rather than making odds ratios incomparable across groups, this property of logistic 

regression ensures that a comparison of odds ratios give an accurate description of the difference in 

effects across groups.  

The comparison coefficients across models is more complicated. The purpose of such a comparison is 

often to see how much of an effect can be explained by a set of intervening variables. One first 

estimates a model with the explanatory variable of interest but without the intervening variables and 

then a model with both the explanatory variable of interest and the intervening variables. The 

difference in effect of the variable of interest between these models is interpreted as the part of the 

effect that is explained by the intervening variables. However, this does not work with logistic 

regression, since adding variables will change the effect even if the added variables are uncorrelated 

with the explanatory variable of interest. So Mood’s second problem is a real problem. 
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Looking at logistic regression as explaining a degree of plausibility can thus solve some of the 

problems, but the effect on a degree of plausibility is not the right effect for all research questions. If 

we want to understand past individual actions then an effect in terms of the latent variable, with its 

link to rational choice theory, is more promising. Effects on a degree of plausibility can be useful 

when the results are to be used for predicting future uncertain events. This could be the case when 

we want to evaluate whether a specific treatment works. In that case we want to use the results to 

help choose the treatment for future cases that will most likely work. Another area where effects on 

degrees of plausibility can be helpful is the study of macro processes like inequality of opportunity. In 

that case we imagine looking at persons who differ with respect to their background and look at how 

likely it is that they obtain some favorable position. The extent to which those chances differ 

measure how closed that society is. Again we predict future events, but now we use that to say 

something about a macro phenomenon; the openness of a society.  

To summarize, the three problems with logistic regression stated by Mood (2010) do not have to be 

as bad if we interpret the dependent variable, the probability, as an assessment of how likely it is 

that the event of interest occurs. In that case one can conclude that: 

1. The odds ratio is a meaningful effect-size. The fact that it is dependent on which variables are 

included in the model is not a problem but actually a requirement for an effect on a 

probability.  

2. It is indeed problematic to compare coefficients across models with different sets of 

explanatory variables, since effects on probabilities are supposed to change when variables 

are added to the model even if they are uncorrelated with the other explanatory variables. 

3. A comparison of odds ratios across groups provides an accurate description of the difference 

in effects across these groups, and under special circumstances can also be given a causal 

interpretation. 
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