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Abstract 

In a much cited overview article Mood (2010) criticized many of the ways in which the raw 

coefficients and odds ratios from logistic regression have been used. However, one interpretation of 

logistic regression is that it has an unusual dependent variable: a probability, which measures how 

certain we are that an event of interest happens. This degree of certainty is a function of how much 

information we have, which in case of logistic regression is captured by the variables we add to the 

model. If the dependent variable is interpreted in that way many of the problems with logistic 

regression pointed out by Mood (2010) turn out to be desirable properties of the logistic regression 

model. 

Introduction 

Since the appearance of the overview article by Mood (2010) there has been a growing concern within 

sociology that the odds ratio can no longer be used in research. In particular Mood (2010) concluded 

that: 

                                                           
1 I thank Michelle V. Jackson, Sebastian E. Wenz, Frank Popham, and Richard T. Campbell for useful comments.  
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1. “It is problematic to interpret log-odds ratios or odds ratios as substantive effects, because 

they also reflect unobserved heterogeneity 

2. It is problematic to compare log-odds ratios or odds ratios across models with different 

independent variables, because the unobserved heterogeneity is likely to vary across models. 

3. It is problematic to compare log-odds ratios and odds ratios across samples, across groups 

within samples, or over time – even when we use models with the same independent variables 

– because the unobserved heterogeneity can vary across the compared samples, groups, or 

points in time.”  

In this article I will argue that the first and the last of these problems actually represent desirable 

properties of the logistic regression model if one interprets the dependent variable, the probability, as 

an assessment of how likely it is that the event of interest happens.  

An example of a set of topics where this interpretation makes sense is inequality of opportunity. In 

such studies we want to quantify how likely we think it is that someone with a given background attains 

a desirable position, and the extent to which these assessments differ across backgrounds measures 

inequality of opportunity. However, there are also problems where this interpretation is not helpful. 

For example, if one has a (rational choice) theory involving a latent propensity that guides individual 

choices, and one is interested in structural effects on this latent propensity, then it makes more sense 

to interpret the results in terms of that latent propensity rather than in terms of odds or probabilities. 

So one cannot arbitrarily choose the most convenient interpretation of the dependent variable; it is a 

choice that is predetermined by the research question.   

I will start with a general description of the logistic regression model, followed by a description of the 

problems discussed by Mood (2010) and others (for example: Allison 1999; Auspurg and Hinz 2011; 

Gail, Wieand, and Piantadosi 1984; Karlson, Holm, and Breen 2012; Lee 1982; Neuhaus and Jewell 

1993; Norton 2012; Pang, Kaufman, and Platt 2013; Williams 2009; Wooldridge 2010). I will then 
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discuss why many of these “problems” are not problems at all if one interprets the dependent variable 

as a degree of plausibility2, and when such an interpretation could be useful. 

Logistic regression 

There are two ways in which one can think about the logistic regression model (for example: Long 

1997; Maddala 1986). The first way starts with the observation that a probability is a number 

between zero and one, and if we just used a linear regression on a probability we could easily end up 

with predictions outside that range. With logistic regression we apply the logit transformation to the 

probabilities, meaning that we have a linear model for the log-odds of success instead of the 

probability of success. This is shown in equation (1) where y is the binary dependent variable, P(y=1) 

is the probability that the dependent variable takes the value 1, the xs are the explanatory variables 

and the s their effects.  

 
ln ൬

ݕ)ܲ = 1)
1 − ݕ)ܲ = 1)

൰ = ଴ߚ + ଵݔଵߚ +  ଶ  (1)ݔଶߚ

The odds can be interpreted as the expected number of “successes” per “failure”, and the log-odds is 

the logarithm of that. The log-odds has no upper or lower bound, so a linear model cannot give 

invalid predictions. Moreover, the exponentiated coefficients can be interpreted directly as odds 

ratios, that is, the ratio by which the odds change per unit increase in the explanatory variable. 

This can also be seen as a way of fitting an “S-shaped” curve denoting the effect of the explanatory 

variables on the probability of success, as equation (1) can be rewritten as equation (2). This way the 

predicted probabilities from a logistic regression model are guaranteed to remain within the 

allowable range for probabilities. 

                                                           
2 I will use degree of plausibility or chance as general terms for the assessment of how likely it is that an event 

occurs, and consider probabilities, odds, and log odds as specific ways of quantifying the general concept of 

degree of plausibility or chance. 
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P(y = 1) =

exp(ߚ଴ + ଵݔଵߚ + (ଶݔଶߚ

1 + exp(ߚ଴ + ଵݔଵߚ + (ଶݔଶߚ
  (2) 

The second way of thinking about logistic regression is to assume that there is an unobserved latent 

propensity to experience an event. If that latent propensity passes a threshold (typically 0) then the 

event will occur. What is observed is whether or not the event occurs and not the propensity. The 

latent variable is influenced by the explanatory variables and an error term, as in equation (3), where 

y* is the latent propensity and  is the error term.  

∗ݕ  = ଴ߚ + ଵݔଵߚ + ଶݔଶߚ +  (3) ߝ

The probability of experiencing the event is in this model the probability that the latent propensity is 

larger than zero, which according to equation (3) can be written as 

ݕ)ܲ  = 1) = ଴ߚ)ܲ + ଵݔଵߚ + ଶݔଶߚ + ߝ > 0) (4) 

Since both the s and the xs are fixed, the only uncertain part is the error term. As a consequence 

equation (4) can be rewritten as equation (5):  

ݕ)ܲ  = 1) = ߝ)ܲ > −ሾߚ଴ + ଵݔଵߚ +  ଶሿ) (5)ݔଶߚ

The probability that a random variable, in this case , is larger than some number can be derived 

from the cumulative distribution function. If we assume that the error term follows a logistic 

distribution with mean 0 and a variance equal to ߨ
ଶ

3ൗ , then equation (5) will become equation (2), 

thus leading to logistic regression.  

The fact that both derivations lead to the exact same model, has led to an attitude that it is pretty 

much irrelevant which derivations one chooses. The point of this article is that the difference in 

interpretation has a big impact. 
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The problem 

One characteristic of logistic regression that has troubled many authors (for example: Allison 1999; 

Auspurg and Hinz 2011; Cramer 2007; Gail, Wieand, and Piantadosi 1984; Hauck, Neuhaus, Kalbfleisch, 

and Anderson 1991; Lee 1982; Mood 2010) is that if we add a variable to a logistic regression model, 

the effects of the other variables is very likely to change, even if this additional variable is uncorrelated 

with the other explanatory variables. All that is required is that this new variable influences the 

outcome, it does not need to be correlated with the other explanatory variables. This phenomenon is 

also referred to as non-collapsability. (Asmussen and Edwards 1983; Greenland and Pearl 2011; 

Greenland, Robins, and Pearl 1999; Whittemore 1978) This is problematic because control variables 

are added to a model to adjust for possible confounders. If a variable is not correlated with another 

explanatory variable, then it cannot be a confounder, and we would like the effects of our explanatory 

variables of interest to not change when adding these “non-confounders”. The property of logistic 

regression that the effects do change when adding a “non-confounder” is typically explained with the 

presence of unobserved heterogeneity.  

The simplest version of this explanation starts with the latent variable representation of the logistic 

regression model. As discussed above, the dependent variable in that representation of logistic 

regression is a latent propensity to experience the event. The fact that the dependent variable is latent 

means that the unit is unknown; it does not have a known scale like meters, euros or minutes. Instead 

the unit of that latent variable is fixed by fixing the variance of the error term. So if something changes 

the residual variance, then that also changes the scale of the dependent variable. One way to change 

the residual variance is to add a new explanatory variable to the model. That new variable was 

previously part of the residual. So adding that variable to the regression reduces the residual variance, 

under the usual assumption that the explanatory variable is uncorrelated with the error term. The 

scale of the dependent variable thus changes by adding a variable to our model.  
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This is pretty damning; if the scale of the dependent variable changes then a comparison of coefficients 

becomes meaningless. If the scale of the dependent variable is so dependent on which control 

variables you add, even if those control variables are uncorrelated with the explanatory variable of 

interest, then how can the coefficient of a logistic regression represent the effect of a variable? This is 

the basis for Mood’s first claim that it is problematic to interpret log-odds ratios or odds ratios as 

substantive effects and second claim that it is problematic to compare across models with different 

independent variables. 

This problem also affects comparisons of logistic regression coefficients across groups. To borrow an 

example from Allison (1999): Say, we are estimating one logistic regression to explain some labor 

market outcome for men and another for women. He makes a plausible argument that women’s career 

paths and labor market experiences tend to be more variable than those of men, leading to a residual 

variance that is larger for women than for men. As a consequence the scale of the dependent variable 

in the sample of men is different from the scale of the dependent variable in the sample of women. 

This is the basis for Mood’s third claim that it is problematic to compare log-odds ratios or odds ratios 

across groups. 

The biggest problem is that the scale of latent dependent variable changes when the residual variance 

changes. There is an easy solution to that, as there is another way of looking at logistic regression: 

logistic regression models linear effects of explanatory variables on the log-odds of experiencing the 

event. In that interpretation the dependent variable is no longer a latent variable but the log-odds. 

That scale is known: the logarithm of the odds, which is the logarithm of the expected number of 

“successes” per “failure”. This scale does not change when we add or remove variables from our model 

and it is the same across groups.  

However, this does not solve everything: the effects, the odds ratios, will still change if you add an 

unconfounding variable. Adapting a numerical example by Buis (2011): Say we have two countries, A 

and B, and within each country we look at the effect of a binary variable x on a binary variable y, as 
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described in Table 1. These cross tabulations make for convenient examples, as the parameters of 

logistic regression model can be easily computed by hand: The odds of getting a high y is larger in 

country A compared to country B, but in both countries the odds of getting a high y is three times 

larger for high x individuals compared to low x individuals. This factor three is the odds ratio one would 

get in a logistic regression model. Another important feature of this example is that the distribution of 

x is the same in each country, so country is not a confounding variable.   

--- Insert Table 1 here ---- 

If one were interested in the effect of x and had used a linear regression then it would not matter 

whether one controlled for country or not, as country and x are in this example completely 

uncorrelated. However, this is not true with logistic regression. Not controlling for country means 

collapsing Table 1 to Table 2: If we do not want to control for country then it is sufficient to know that 

there are 300 + 200 =500 observation with low x and low y, 200+100=300 observations with low x and 

high y, etc. When we do that the odds ratio drops from 3 to 2.778. The reason for that change in effect 

of x is that collapsing a table means averaging the probabilities. For example the probability of being a 

high y given a low x in countries A and B is respectively 200/400=.5 and 100/100=.25. After collapsing 

Table 1 to Table 2 the probability of being a high y given a low x is 300/800 = (.5 + .25)/2 = .375. 

However, with logistic regression we work with odds and odds ratios, and these are non-linear 

transformations of probabilities. So averaging probabilities does not correspond to averaging odds. To 

continue the example: (1+.333)/2=0.667≠0.6. 

--- Insert Table 2 here --- 

So even though the scale of the dependent variable is comparable across models and groups, the size 

of the effect is still dependent on which variables were added to the model even if those added 

variables are non-confounding variables. In particular, in the model without the extra variable the 

probabilities tend to be less extreme (more in the middle and further away from either one or zero), 
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and the effects are thus smaller compared to the model with the extra variable (Neuhaus and Jewell 

1993). 

A solution 

Much of the effort in this area has focused thus far on removing the effect of non-confounding 

variables, by for example using average marginal effects or linear probability models (Auspurg and Hinz 

2011; Mood 2010), using standardized regression coefficients (Karlson 2015; Winship and Mare 1984), 

or directly estimating the degree of heterogeneity and controlling for it (Allison 1999; Williams 2009). 

However, what does this effect of unconfounding variables mean and is it always desirable to remove 

it? 

Consider the meaning of the dependent variable in a logistic regression: In a pure mechanical sense 

logistic regression models the proportion of successes. But often this proportion is given the additional 

meaning of chance, that is, the researcher’s assessment of how likely it is that an individual will 

experience an event. In general a chance involves a person who has a statement about which he or 

she has a given set of evidence that entitles him or her to be absolutely sure that the statement is true, 

or absolutely sure that the statement is false, or somewhere in between. A probability, or an odds, or 

a log odds measures her or his  “degree of rational believe” (Keynes 1921 [2004]), or degree of “partial 

assent” (Cox 1946), or “degrees of plausibility” (Jaynes 2003). So, a chance tries to quantify uncertainty.  

It is useful to think about where that uncertainty comes from by comparing two models. The first 

model can be illustrated using the example of the chance that a child enters university. This chance is 

influenced by many things and some of these are known to the researcher (e.g. family background) 

and others unknown (e.g. whether a teacher’s teaching style fits well to the learning style of the 

student in question). The uncertainties we want to capture with chance in this case are due to all the 

unknown influences. As a consequence, learning more about the student should change our 

assessment of the chance that that student will enter university. In this case the chance is conditional 

on what we know about that student, and not an absolute property of the student (Keynes 1921 
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[2004]). The second model can be illustrated using the example of a (thought) experiment involving 

flipping a coin or rolling a dice. In this case the (thought) experiment is constructed in such a way that 

there are no unknown influences that we in theory could know in advance (at least, not without 

cheating). Instead we are uncertain because this is a process with an a priori unknowable outcome.  In 

such an experiment the chance could be seen as an absolute property of the coin or die because the 

experiment was created in such a way that there is no information to add. However, phenomena 

where there is no possible additional information are exceedingly rare in the social sciences, so the 

first model describes most chances as estimated by logistic regression in the social sciences better than 

the second model.  

Another question that needs to be cleared is that if we use logistic regression as a model for a chance, 

then what is the statement we are uncertain about? We are not uncertain about the persons in our 

dataset, as we have already observed whether or not they experienced the event we are interested in. 

Instead, we imagine a person with the same characteristics as a person in the dataset but for whom it 

is unknown whether or not he or she experienced the event3. We use the predicted proportion of 

persons with those characteristics that experienced the event as our measurement of the degree of 

plausibility that this new person experiences the event. So the chances are not a property of the units 

that are being studied, but a property of the researcher: it is her or his assessment of how likely it is 

that some with similar characteristics will experience the event. 

If we look at chance in this way, then it is necessarily conditional on the available information. In logistic 

regression the “available knowledge” translates to the set explanatory variables included in the model. 

So the degree of plausibility is defined by the choice of control variables rather than something that 

exists outside the model. This links back to the scale of the latent variable being dependent on which 

control variables are added to the model. However, instead of this dependence being a problem, it is 

                                                           
3 If we have continuous characteristic in our model finding such a similar person may involve interpolation or 

extrapolation, but the basic argument remains the same. 
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now a desirable property of the logistic model in the sense that the chances we get out of a logistic 

regression react to new information (new variables) as one would expect. In particular, as one adds 

new variables, and thus becomes surer about the outcome, the chances will become more extreme. 

This property was illustrated in the example from tables 1 and 2. 

This way of thinking about probability not only involves a change in chances due to adding extra 

information, but also a change in the effects of variables on chances due to adding extra information. 

With effect I mean the extent to which two chances are not equal. This could be measured in many 

ways. The most common ones are the difference between two probabilities or the ratio of two odds. 

If we choose to measure the effect as the ratio of odds (the aptly named odds ratio), then the effect 

will have desirable properties in terms of the chance interpretation of logistic regression. Before adding 

extra information, we will be less sure, and thus the odds should take less extreme values than after 

adding extra information. This means that in the chance interpretation of logistic regression we want 

the odds to be closer together before adding variables than after adding variables. If the chances are 

forced to be closer together due to less information being available, then the effects have to be 

smaller; there is less room for variables to have an effect before adding extra information compared 

to after adding extra information. So not only should one expect the chances to change in reaction to 

extra information, but also effects on those chances. This means that adding unconfounding variables 

should increase the effect of other variables, which is exactly what happens in logistic regression. 

Moreover, if the rolling dice or coin flipping model of chance applies to the chance we are studying, 

then logistic regression model will still act as expected: any additional variable will in that case not 

influence the outcome, and a variable that adds nothing will not change the logistic regression 

coefficients as the resulting table is collapsible along that dimension. 

A comparison of effects across groups is also influenced by this interpretation of the dependent 

variable. If one group is more predictable than another, then that should lead to larger effects in the 

more predictable group. The logic is the same as with adding an unconfounding variable: In a group 

where one is less sure the range of possible predicted odds should be more restrictive compared to a 
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group where one is surer. As a consequence there is more room for a variable to have an effect in a 

group where one is surer. Consider again the example by Allison (1999) where we investigate the 

difference between men and women in effect of a variable on the chance of some labor market 

outcome. The labor market experiences tend to more predictable for men than for women. This should 

make the effects of variables for men larger than those effects for women. As was discussed above the 

logistic regression model has exactly this characteristic. So rather than that being a problem, this is 

again a desirable characteristic and a comparison of odds ratios across groups will thus give an accurate 

description of differences in effects across these groups.  

Mood (2010) also considered the comparison of coefficients across models with different explanatory 

variables problematic. Such a comparison is typically done to quantify the indirect effect of a variable. 

For example, we may want to know how much of the effect of parental background on the probability 

of entering university can be explained by the fact that children with a privileged parental background 

tend to perform better at school prior to entering university, and those children that performed better 

at school are more likely to enter university. In a linear regression model we could just estimate two 

models: one with just parental background and one with parental background and prior academic 

performance. The difference in effect of parental background between these models quantifies the 

indirect effect of parental background on entering university via prior academic performance. 

However, this trick does not work with logistic regression: If adding a variable should change the effect 

of parental background regardless of whether it is correlated with family background, then the 

comparison of coefficients between models with and without the intervening variables is not a good 

way of quantifying the indirect effect. Instead one can scale the effects in both models such that they 

refer to the uncertainty present without adding the intervening variables (Buis 2010; Erikson, 

Goldthorpe, Jackson, Yaish, and Cox 2005) or scale the effects in both models such that they refer to 

the uncertainty present when also adding the intervening variables (Karlson, Holm, and Breen 2012). 

Either can be reasonable. The logic behind the former is that the explanandum is the total effect, which 

is the effect of the variable of interest without adding the intervening variables. The logic behind the 
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latter is that the intervening variable is part of the model, so the uncertainty that remains after adding 

the intervening variable is the relevant amount of uncertainty. A consequence of that is that the total 

effect using the method by Karlson, Holm, and Breen (2012) will differ depending on which intervening 

variables one wants to model. So if one wants to compare indirect effects for different intervening 

variables then that would be easier using the method by Erikson et al. (2005) or Buis (2010). 

So, even though the coefficients are exactly the same regardless of whether we consider the logistic 

regression as a model of a latent variable or as a model of a chance, the interpretation of the 

coefficients are very different. So much so, that changing the interpretation of the dependent variable 

to a degree of plausibility solves some of the problems with logistic regression. If the solution is that 

easy, then why wouldn’t we always choose the chance interpretation of logistic regression? To be more 

precise, when would a chance interpretation of logistic regression be appropriate? Let’s start with the 

alternative: the latent variable interpretation. Its main strength is that it can easily incorporate a theory 

of individual behavior involving rational choice and utility maximization. If one is interested in testing 

such a theory, then the latent variable interpretation is the most sensible choice. In a latent variable 

interpretation one thus tries to reconstruct the process through which the individuals in the data came 

to make the decision they made. There are many research question, where this is exactly what one 

wants to do. 

If one interprets the dependent variable as a chance, then one no longer talks about the persons in the 

data, as we already observed whether or not they experienced the event of interest, and there is thus 

no uncertainty. Instead with the chance interpretation of logistic regression we talk about similar 

persons for whom we don’t (yet) know whether they will experience the event of interest or not. A 

logical application of this way of thinking would be the evaluation of some treatment or intervention, 

as there the interest is often in whether or not this treatment or intervention should be applied more 

often. In those cases we are interested in a reasonable assessment of how likely it is that a positive 

outcome occurs for those new cases, and in particular to what extent that chance improves (or 

deteriorates) when a person receives a given treatment.  
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Within sociology another set of questions that would fit well in this framework would be questions 

involving “inequality of opportunity”. Here we look at a society and consider the extent to which they 

offer all its members the same chances of attaining favorable positions regardless of their background. 

These favorable positions could for example be a “high” occupation, more education, a desirable 

partner, or health. Inequality of opportunity is about persons who have not attained that favorable 

position yet, but have a chance to do so. In particular, the difference in these chances across groups is 

what defines inequality of opportunity. Moreover, inequality of opportunity is a property of a society 

not an individual. The chances can also be viewed as properties of groups rather than individuals; all 

persons with the same characteristics share the same chance. Seen from this perspective, the logistic 

regression model interpreted in terms of chances is a “population averaged model” (Agresti 2013; 

Fitzmaurice, Laird, and Ware 2004).  

 

Summary and conclusions 

There has been a long discussion on whether the influence of unobserved heterogeneity makes the 

interpretation of logistic regression coefficients problematic. Mood (2010) summarized that discussion 

by naming three problems: 

1. “It is problematic to interpret log-odds ratios or odds ratios as substantive effects, because 

they also reflect unobserved heterogeneity 

2. It is problematic to compare log-odds ratios or odds ratios across models with different 

independent variables, because the unobserved heterogeneity is likely to vary across models. 

3. It is problematic to compare log-odds ratios and odds ratios across samples, across groups 

within samples, or over time – even when we use models with the same independent variables 

– because the unobserved heterogeneity can vary across the compared samples, groups, or 

points in time.”  



14 
 

This article adds to this debate by stating that unobserved heterogeneity does have the effects as 

summarized by for example Mood (2010) and Auspurg and Hinz (2011), but that that does not have to 

be a problem and can actually be desirable. The key difference with previous contributions is that this 

article focusses on finding research problems where these characteristics of the odds ratio are 

desirable rather than problematic. These non-problematic research problems have in common that 

their dependent variable is the chance or the “degree of plausibility” – that is, an assessment of how 

likely it is that an event occurs – instead of a latent propensity. A degree of plausibility should be 

dependent on the information available for making such an assessment; the more (mutually 

consistent) information we have the surer we are. In logistic regression the set of explanatory variables 

represents the information used for making such an assessment. So adding variables to a model that 

predicts a degree of plausibility should result in different coefficients.  

To be more precise, consider what one would expect if one adds an additional variable z, and that 

variable is relevant for predicting a probability. In that case one will be more certain after adding it. In 

other words, the chances should become more extreme. This should also influence the effect of other 

variables. Say I am interested in the effect of a variable x. The effect is the extent to which the chances 

are not the same across groups, which can be measured in different ways. For example, as the 

difference in probabilities or as the ratio of odds. Before adding the additional variable z the predicted 

chances should be closer together compared to after adding that additional variable. As a 

consequence, there is less room for the variable x to have an effect before adding z than after adding 

z. So adding the additional variable z should increase the effect of a variable, even if x and z are 

uncorrelated. The log-odds ratios and odds ratios from a logistic regression show exactly this behavior. 

So Mood (2010) was right when she noted in the first problem that these coefficients are dependent 

on which variables are included in the model even if those additional variables are uncorrelated with 

the variables of interest, but that property of logistic regression can actually be desirable instead of a 

problem. 
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The size of the effect on a degree of plausibility is a function of how certain we are that the event of 

interest happens. This degree of certainty can change by adding a variable as discussed above, but it 

can also differ from group to group. Here we would expect stronger effects in groups where we are 

more certain. Within groups were we are more certain the predicted chances can be more extreme, 

so there is more room for a variable to have an effect. Logistic regression coefficients have exactly this 

property, as can be most clearly seen in the latent variable representation of logistic regression. So 

rather than making odds ratios incomparable across groups, this property of logistic regression ensures 

that a comparison of odds ratios give an accurate description of the difference in effects across groups.  

The comparison coefficients across models is more complicated. The purpose of such a comparison is 

often to see how much of an effect can be explained by a set of intervening variables. One first 

estimates a model with the explanatory variable of interest but without the intervening variables and 

then a model with both the explanatory variable of interest and the intervening variables. The 

difference in effect of the variable of interest between these models is interpreted as the part of the 

effect that is explained by the intervening variables. However, this does not work with logistic 

regression, since adding variables will change the effect even if the added variables are uncorrelated 

with the explanatory variable of interest. So Mood’s second problem is a real problem, even in the 

chance interpretation of a logistic regression model. 

Looking at logistic regression as explaining a degree of plausibility can thus solve some of the problems, 

but the effect on a degree of plausibility is not the right effect for all research questions. If we want to 

understand past individual actions then an effect in terms of the latent variable, with its link to rational 

choice theory, can be more promising. Effects on a degree of plausibility can be useful when the results 

are to be used for predicting future uncertain events. This could be the case when we want to evaluate 

whether a specific treatment works. In that case we want to use the results to help choose the 

treatment for future cases. Another area where effects on degrees of plausibility can be helpful is the 

study of macro processes like inequality of opportunity. In that case we imagine looking at persons 

who differ with respect to their background and look at how likely it is that they obtain some favorable 
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position. The extent to which those chances differ measure how closed that society is. Again we predict 

future events, but now we use that to say something about a macro phenomenon; the openness of a 

society.  

To summarize, the three problems with logistic regression stated by Mood (2010) do not have to be as 

bad if we interpret the dependent variable, the chance, as an assessment of how likely it is that the 

event of interest occurs. In that case one can conclude that: 

1. The odds ratio is a meaningful effect-size. The fact that it is dependent on which variables are 

included in the model is not a problem but actually a requirement for an effect on a chance.  

2. It is indeed problematic to compare coefficients across models with different sets of 

explanatory variables, since effects on chances are supposed to change when variables are 

added to the model even if they are uncorrelated with the other explanatory variables. 

3. A comparison of odds ratios across groups provides an accurate description of the difference 

in effects across these groups. 

References 

Agresti, Alan. 2013. Categorical data analysis. Hoboken, NJ: Wiley. 
Allison, Paul D. 1999. "Comparing logit and probit coefficients across groups." Sociological Methods & 

Research 28:186-208. 
Asmussen, Søren and David Edwards. 1983. "Collapsibility and response variables in contingency 

tables." Biometrika 70:567-578. 
Auspurg, Katrin and Thomas Hinz. 2011. "Gruppenvergleiche bei Regressionen mit binären 

abhängigen Variablen—Probleme und Fehleinschätzungen am Beispiel von Bildungschancen 
im Kohortenverlauf." Zeitschrift für Soziologie 40:62-73. 

Buis, Maarten L. 2010. "Direct and indirect effects in a logit model." Stata Journal 10:11-29. 
—. 2011. "The consequences of unobserved heterogeneity in a sequential logit model." Research in 

Social Stratification and Mobility 29:247-262. 
Cox, Richard T. 1946. "Probabiltiy, frequency, and reasonable expectation." American Journal of 

Physics 14:1-13. 
Cramer, Jan S. 2007. "Robustness of Logit Analysis: Unobserved Heterogeneity and Mis-specified 

Disturbances." Oxford Bulletin of Economics and Statistics 69:545-555. 
Erikson, Robert, John H Goldthorpe, Michelle Jackson, Meir Yaish, and David R Cox. 2005. "On class 

differentials in educational attainment." Proceedings of the National Academy of Sciences of 
the United States of America 102:9730-9733. 

Fitzmaurice, Garret M., Nan M. Laird, and James H. Ware. 2004. Applied longitudinal analysis. 
Hoboken, NJ: Wiley. 



17 
 

Gail, M. H., S. Wieand, and S. Piantadosi. 1984. "Biased estimates of treatment effect in randomized 
experiments with nonlinear regressions and omitted covariates." Biometrika 71:431-444. 

Greenland, Sander and Judea Pearl. 2011. "Adjustments and their consequences—collapsibility 
analysis using graphical models." International Statistical Review 79:401-426. 

Greenland, Sander, James M. Robins, and Judea Pearl. 1999. "Confounding and Collapsibility in 
Causal Inference." Statistical Science 14:29-46. 

Hauck, Walter W., John M. Neuhaus, John D. Kalbfleisch, and Sharon Anderson. 1991. "A 
consequence of omitted covariates when estimating odds ratios." Journal of Clinical 
Epidemiology 44:77-81. 

Jaynes, Edwin T. 2003. Probability theory: the logic of science: Cambridge university press. 
Karlson, Kristian Bernt. 2015. "Another look at the method of y-standardization in logit and probit 

models." The Journal of Mathematical Sociology 39:29-38. 
Karlson, Kristian Bernt, Anders Holm, and Richard Breen. 2012. "Comparing regression coefficients 

between same-sample nested models using logit and probit: A new method." Sociological 
Methodology 42:286-313. 

Keynes, John Maynard. 1921 [2004]. A Treatise on Probability. Mineola, NY: Dover Publications, Inc. 
Lee, Lung-Fei. 1982. "Specification error in multinomial logit models: Analysis of the omitted variable 

bias." Journal of Econometrics 20:197-209. 
Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables. Thousand 

Oaks: Sage. 
Maddala, Gangadharrao S. 1986. Limited-dependent and Qualitative Variables in Econometrics. 

Cambridge: Cambridge university press. 
Mood, Carina. 2010. "Logistic regression: Why we cannot do what we think we can do, and what we 

can do about it." European Sociological Review 26:67-82. 
Neuhaus, John M. and Nicholas P. Jewell. 1993. "A geometric approach to assess bias due to omitted 

covariates in generalized linear models." Biometrika 80:807-815. 
Norton, Edward C. 2012. "Log odds and ends." in NBER Working Papers, 18252. Cambridge, MA: 

National Bureau of Economic Research. 
Pang, Menglan, Jay S Kaufman, and Robert W Platt. 2013. "Studying noncollapsibility of the odds 

ratio with marginal structural and logistic regression models." Statistical Methods in Medical 
Research. 

Whittemore, Alice S. 1978. "Collapsibility of multidimensional contingency tables." Journal of the 
Royal Statistical Society. Series B (Methodological) 40:328-340. 

Williams, Richard. 2009. "Using heterogeneous choice models to compare logit and probit 
coefficients across groups." Sociological Methods & Research 37:531-559. 

Winship, Christopher and Robert D. Mare. 1984. "Regression models with ordinal variables." 
American Sociological Review 49:512-525. 

Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: 
MIT press. 

 

  



18 
 

Table 1: Hypothetical example while controlling for country 

  y N probability odds Odds 

ratio 

country x Low High     

A 

Low 200 200 400 .5 1 

3 

High 100 300 400 .75 3 

B 

Low 300 100 400 .25 .333 

3 

High 200 200 400 .5 1 
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Table 2: Hypothetical example without controlling for country 

 Y N probability odds Odds ratio 

x Low  High     

Low  500 300 800 .375 0.6 

2.778 

High 300 500 800 .625 1.667 

 


