
Chapter 6

Not all transitions are equal:

The relationship between inequality of educational

opportunities and inequality of educational

outcomes

6.1 Introduction

Social stratification research has long been concerned with the relationship between

family socioeconomic status (SES) and offspring’s educational attainment (Breen and

Jonsson, 2005; Hout and DiPrete, 2006). A strong positive association between the

two implies that respondents with higher SES backgrounds are more likely to achieve

higher levels of education than respondents with lower SES backgrounds. For this

reason, the strength of the relationship is often termed ‘Inequality of Educational Op-

portunity’ or IEO (Boudon, 1974; Mare, 1981). IEO can be measured in a variety of

ways, and these different measures tend to lead to seemingly different conclusions.

This chapter will focus on two of these measures of IEO: the association between

family SES and the highest achieved level of education, and the association between

family SES and probabilities of passing from one educational programme to the next.

These will be called Inequality of Educational Outcome (IEOut) and Inequality of

Educational Opportunity proper (IEOpp) respectively, while IEO will be used as a

generic term. IEOut focusses on the end result of the educational process, which is

often of interest as this result, the highest achieved level of education, is the most

visible result of education in subsequent areas of life like the labor market or the mar-

riage market. IEOpp focusses on the process of attaining education. Attaining a level

of education is something that typically happens over a long period of time and is

usually split up into different steps, for example finishing primary eduction, finishing

secondary education, etc. Knowing the influence of SES at each of these transitions

can give a more complete picture of how IEO came about. So, these two measures

of IEO capture different aspects of IEO: IEOut describes inequality of the outcome of

the process of attaining education, while IEOpp describes inequalities in that process

itself. The aim of this chapter is to show how estimates of IEOpp and IEOut can com-

105



106 Chapter 6

plement one another. The key challenge when dealing with complementary models is

to find a way to move beyond just presenting separate results from different models to

an integrated discussion of the results that shows how the different results are related

to one another.

This is done by demonstrating that there is a relationship between IEOpp and

IEOut in the form of a decomposition of IEOut as a weighted sum IEOpps. This

means that the IEOpps (the process) lead to IEOut (the outcome), but that not every

IEOpp (that is, every step in the process) is of equal importance for achieving the

outcome. Moreover, as will be shown below, the importance of each IEOpp for the

IEOut can differ across groups. A clear example of this is the differences in the impor-

tance of the transition between primary education and secondary education between

cohorts. In most industrialized countries virtually all students within the recent co-

horts remain in education after the primary level. As a result, any inequality at this

first transition only affects a few (or no) students, and is thus not very important for

IEOut. The situation was quite different at the beginning of the twentieth century: at

that time many more students failed to continue after primary education, so the IEOpp

for the transition between primary and secondary education was much more important

for the IEOut than it is now. Within the decomposition developed in this chapter there

will be two additional reasons why the importance of a transition can differ across

groups: the importance of a transition will increase as the proportion of people at risk

increases, and when the difference in the value of the expected highest attained level

of education between those that pass and those that fail increases. All three are sub-

stantively interpretable ways in which the distribution of education— that is, for each

educational programme the proportion of people that has that program as their highest

achieved level of eduction — can influence IEOut. This decomposition thus leads one

to relate IEOpp and IEOut to one another as two complementary descriptions of IEO,

and allows one to investigate the effect of changes in the distribution of education on

IEOut. The fact that IEOut and IEOpp are related is not new, Mare (1981) already es-

tablished that, but the use of this relationship to create an integrated analysis of IEOpp

and IEOut and to study the impact of educational expansion on IEOut is new to the

best of my knowledge.

This chapter will begin with a description of a number of models of educational in-

equality. This will be followed by a discussion of the model proposed by Mare (1981),

and the derivation of the relationship between IEOpp, IEOut, and the distribution of

education. In the next section the decomposition will be illustrated by applying it to

differences in IEOut between men and women and across cohorts that were 12 years

old in the Netherlands between 1905 and 1991.
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6.2 Different models of IEO

A variety of different models have been proposed and used for studying IEO. These

different models tend to emphasize different aspects of IEO. For example much of the

early research focusses on inequality in the end result by studying the association be-

tween family background and highest achieved level of education (Blau and Duncan,

1967; Duncan, 1967; Hauser and Featherman, 1976). This research was supplemented

by Boudon (1974) and Mare (1980, 1981), who studied educational inequality during

the process of attaining education as the effect of family background on the probability

of passing steps between educational programmes. In particular, Mare (1980, 1981)

proposed the use of the sequential logit model for estimating IEOpps. Estimates of

IEOpp and IEOut are now often treated as competing representations of educational

inequality. The reason for that is that Mare (1981) showed that there is an relationship

between IEOpp and IEOut which involved the transition probabilities, but presented

this relationship as a black box. The main point he made was that differences in these

estimates of IEOut between cohorts are in part due to differences in the distribution

of education. These effects can be considerable, since the distribution of education

varies substantially over cohorts. In almost all countries, people born in later cohorts

have attained more education, a process that has been termed ‘educational expansion’

(Hout and DiPrete, 2006). Furthermore, Mare (1981) showed the IEOpps control for

this effect of educational expansion. This led Mare (1981) to argue that the IEOpps

are a more ‘pure’ measure of IEO. Since then, the literature has approached the re-

lationship between IEOut, the IEOpps, and the distribution of education as a black

box.

This practice leads one to ignore two opportunities. First, the complementary na-

ture of the information contained in estimates of IEOpps and IEOut are not fully used

when treating the relation between these two as a black box. IEOpp and IEOut are

natural complements as the former describes the process of attaining education while

the latter describes the outcome of that process. Some studies report both estimates for

the IEOpps and the IEOut, (for example Shavit and Blossfeld, 1993) but these do not

relate the two types of estimates to one another. Second, this practice makes it hard

to study the impact of educational expansion on IEO, because one explicitly controls

for changes in the distribution of education. Those studies that have investigated the

relationship (Mare, 1981; Smith and Cheung, 1986; Nieuwbeerta and Rijken, 1996)

compare the observed IEOut with the simulated results of two counterfactual sce-

narios, those being that either the distribution of education remained unchanged and

IEOpp changes as observed; or that the distribution of education changes as observed,

but IEOpp remains unchanged. Simulations such as these can tell us how much IEOut

is affected by changes in the distribution of education and changes in IEOpps, but do
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not offer us any insights as to why. This leads to the following two questions:

How are IEOut and IEOpp related to one another, and how can this rela-

tion be used for a meaningfully integrated analysis of IEOpp and IEOut?

How are IEOut and the distribution of education related to one another,

and how can this relation be used for an analysis of the influence of

changes in the distribution of education on IEOut?

These questions are answered by showing that the standard model for estimating

IEOpps, the sequential logit model proposed by Mare (1981), implies an estimate of

IEOut, which can be decomposed into a weighted sum of the IEOpps. Moreover,

it will be shown that each IEOpp’s weight depends on the distribution of education

in three substantively interesting ways. An IEOpp receives more weight if 1) the

proportion of people ‘at risk’ of making that transition increases; 2) the proportion

passing that transition is closer to 50%, that is, passing or failing that transition cannot

be regarded as almost universal; and 3) the difference in expected level of education

between those who pass and those who fail to make the transition increases, that is, the

expected gain from passing increases. This decomposition of IEOut into a weighted

sum of IEOpps provides a link between IEOpp and IEOut and a way of conducting an

integrated analysis of the two. The decomposition of the weights into the product of

its three elements provides a link between the distribution of education and IEOut and

a way of showing the influence of changes in the distribution of education on IEOut.

The decomposition of IEOut into IEOpps and weights has been implemented in Stata

(StataCorp, 2007) in the seqlogit package (Buis, 2007b), which is documented in

Technical Materials II.

This decomposition does not require a new model, it is just a different way of

presenting the results of a sequential logit model. This means that the critique by

Cameron and Heckman (1998) on the sequential logit model also applies to this de-

composition. Their argument starts with the observation that it is very likely that not

all variables that influence the probability of passing a transition are observed. In this

case the sequential logit model will estimate the effect of the observed explanatory

variables on the proportion of respondents that pass a transition averaged over these

unobserved variables rather than on an individual’s probability of passing the transi-

tions. The problem is that the group level effects measured by the sequential logit

model will not be the same as the individual level effects, even if the unobserved vari-

ables are non-confounding variables. The easiest solution is to interpret the results

of the sequential logit model as a description of differences between different groups

rather than interpret the results as individual-level effects. Alternatively, one can try

to adapt the model to take unobserved heterogeneity into account. This is obviously
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a difficult problem, as one tries to control for variables that have not been observed,

and a consensus on the best way of doing this has yet to appear. A discussion of the

various solutions proposed to solve this problem is beyond the scope of this chapter,

so the main focus of this chapter will be on the effects on group-level transition rates

rather than individual-level effects. However, the decomposition can be applied to

some of the models that have been proposed for estimating individual-level effects

(for example: Mare 1993 and Chapter 7 of this dissertation), and generalizations of

the decomposition for these models will be briefly discussed.

6.3 The relationship between inequality of educational

opportunities and outcomes

In this section I will derive and discuss a decomposition of an estimate of IEOut into

a weighted sum of IEOpps. This decomposition starts with the model for IEOpps pro-

posed by Mare (1981), which I will refer to as the sequential logit model (following

Tutz (1991)). This model is also known under a variety of other names: sequential

response model (Maddala, 1983), continuation ratio logit (Agresti, 2002), model for

nested dichotomies (Fox, 1997), and simply the Mare model (Shavit and Blossfeld,

1993). Consider, for instance, a hypothetical education system consisting of four lev-

els: no education, primary education, secondary education, and tertiary education as

represented in Figure 6.1. Figure 6.1 shows how respondents face three transitions in

this system: they can attend primary education or opt for no education at all; if they opt

for primary education they can choose to leave the system once they have completed

primary education, or go on to secondary education; and if they opt for secondary

education, they can then either choose to leave once they have completed this level

or go on to tertiary education. The implication is that if someone’s highest-achieved

level of education is primary education, then that person was ‘at risk’ of passing the

first two transitions, but not the third. Furthermore, it implies that the person passed

the first transition, but failed the second.

The model assumes that one has to be ‘at risk’ of passing a transition — that is,

to have passed through all lower transitions — in order to make a decision at that

transition about whether to continue in education or to leave the system. Aside from

this, these decisions are assumed to be completely independent. As a result, one can

estimate the IEOpp by running separate logistic regressions for each transition on the

appropriate sub-sample (Mare, 1980). This model is shown in equation (6.1).
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Figure 6.1: Hypothetical educational system

no education

primaryp1

secondaryp2

tertiaryp3 l3 = 16

exit1− p3
l2 = 12

exit1− p2 l1 = 6

exit1− p1 l0 = 0

p̂1i =
exp(α1 + λ1SESi + β1xi)

1 + exp(α1 + λ1SESi + β1xi)

p̂2i =
exp(α2 + λ2SESi + β2xi)

1 + exp(α2 + λ2SESi + β2xi)
if pass1 i = 1 (6.1)

p̂3i =
exp(α3 + λ3SESi + β3xi)

1 + exp(α3 + λ3SESi + β3xi)
if pass2 i = 1

The probability that person i passes transition k is p̂ki. The IEOpp belonging to

transition k is λk , the constant for transition k is αk, and the effect of a control variable

xi is represented by βk. Whether or not individual i has passed the previous transition

is indicated by the indicator variable passk−1 i. It is assumed that everybody is at risk

of passing the first transition. The differences in IEOpp between men, women, and

cohorts can be obtained by adding the appropriate interaction terms to the model.

In order to make a link between the IEOpps (the λks) and IEOut, it is necessary to

assign a value (lk) to each level of education. By assigning values to each educational

level, it becomes possible to use the sequential logit model to calculate the expected

highest achieved level of education (E(Li)). The results from the sequential logit are

used to compute predicted probabilities for passing each transition, and the expected

highest achieved level of education is the sum of the value of each level of education

times the probability of attaining that level. This is set out in equation (6.2). The

probabilities and values assigned to each level can be derived from Figure 6.11.

1The values that are assigned to each of the levels in Figure 6.1 are typical for when these values are

based on years or pseudo-years of education, but this decomposition is not limited to this metric.
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E(Li) = (1 − p̂1i)l0 + p̂1i(1 − p̂2i)l1 + p̂1ip̂2i(1− p̂3i)l2 + p̂1ip̂2ip̂3il3 (6.2)

The family’s SES is part of equation (6.2) through the p̂kis described in equa-

tion (6.1). Equation (6.2) can be understood as a regression equation showing a non-

linear relationship between a family’s SES and the highest achieved level of educa-

tion. Using a sequential logit model to derive such a (non-linear) regression is unusual.

A more common method for estimating IEOut is to use a linear regression of highest

achieved level of education on family SES (for example, Blau and Duncan, 1967;

Shavit and Blossfeld, 1993). The advantage of the non-linear model derived from the

sequential logit model over the linear model is that the non-linear model provides the

link between the IEOpps and the IEOut. Moreover, the non-linear model takes the

bounded nature of the dependent variable into account, as it can never lead to predic-

tions below the lowest level of education or above the highest level of education.

Recall that IEOut is the effect of a family’s SES on the respondent’s expected

highest achieved level of education, or, in other words, howmuch the expected highest

achieved level of education changes if a family’s SES changes2. Consequently, IEOut

is the first derivative of equation (6.2) with respect to a family’s SES. This derivative

is shown in equation (6.3). A step-by-step derivation is set out in the appendix to this

chapter.

∂E(Li)
∂SES

=

{1 × p̂1i(1− p̂1i) × [(1− p̂2i)l1 + p̂2i(1− p̂3i)l2+

p̂2ip̂3il3 − l0] } λ1 +

{p̂1i × p̂2i(1− p̂2i) × [(1− p̂3i)l2 + p̂3il3 − l1] } λ2 +

{p̂1ip̂2i × p̂3i(1− p̂3i) × [(l3 − l2)] } λ3

(6.3)

Equation (6.3) shows that IEOut
(

∂E(Li)
∂SES

)

is a weighted sum of the IEOpps (the

λks). The weights (the sections between curly brackets) consist of three parts, all of

which are related to the distribution of education. These are:

1. The predicted proportion of people at risk of passing a transition. For the first

transition, this proportion is 1; for the second it is the proportion of students who

complete primary education, p̂1i; and for the third transition, it is the proportion

who completed secondary education, p̂1ip̂2i. Substantively, this means that a

transition is more important when more people are at risk of passing it.

2More precisely, the measure of IEOut used in this chapter studies how the average highest achieved

level of education of a group of respondents with the same family SES reacts to a change in the family SES

rather than an individual-level effect, as was discussed before.
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2. The variance of the indicator variable showing who passed and who failed the

transition, p̂ki(1 − p̂ki). This variance is a function of the predicted probability

of passing. This is lowest if virtually everybody passes or fails, and is highest

when the probability of passing is .5. This makes sense at a substantive level,

because if only a few people pass or fail a transition, then any inequality at this

stage will only affect a few people.

3. The differences between the expected level of education of those who pass the

transitions and those who do not. These are the parts in the square brackets. For

instance, the expected level of education of those who pass the first transition

is (1 − p̂2i)l1 + p̂2i(1 − p̂3i)l2 + p̂2ip̂3il3 and the expected level of education

for those that fail the first transition is l0. The difference between the two is the

expected gain from passing the first transition. The substantive interpretation of

this is that a transition becomes more important if passing it leads to a greater

expected increase in the highest achieved level of education.

The result is summarized below. IEOut is a weighted sum of IEOpps, and the weights

are the product of the proportion at risk, the variance, and the expected gain in level

of education resulting from passing.

IEOuti =

K
∑

k=1

(weight
ki
× IEOpp

k
)

weight
ki

= at riskki × varianceki × gain
ki

Each respondent will have its own IEOut and set of weights because the weights

are based on the predicted probabilities of passing the transitions, and these probabili-

ties will differ between persons depending on their values on the explanatory variables.

In this chapter this decomposition will be summarized by computing the decomposi-

tion for an individual with average values on the explanatory variables. This is not the

only way one can summarize the IEOuts. For example, one can compute the IEOut

for each individual and average those. This ‘averaged IEOut’ can also be decomposed

into a weighted sum of IEOpps, where the weights are now the average of the weights

predicted for each individual. However, these averaged weights can no longer be de-

composed as the product of its three constitutive elements3. This is why the IEOut of a

person with average values on its explanatory variables is preferred over the ‘averaged

IEOut’.

3The reason for this is that the weight is a product of variables, and the average of a product of variables

is not the same as the product of the averages of these variables.
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As was discussed before, this decomposition is just a different way of representing

the results from a sequential logit model, so the criticism by Cameron and Heckman

(1998) also applies here. However, this decomposition can be extended to models that

estimate individual-level IEOpps as long as the individual-level IEOpps are estimated

by modelling the transition probabilities using a logistic curve, as is the case in (Mare,

1993) and Chapter 7. In both articles, certain assumptions are made concerning the

distribution of the unobserved variables, and the IEOpps are estimated given these

assumptions. The presence of the unobserved variables complicates the estimation

in ways that are beyond the scope of this chapter, but within the context of equa-

tions (6.1), (6.2), and (6.3) the unobserved variable is not different from the observed

variables. In this case one can create predicted probabilities for someone with average

values on both the observed and unobserved variables and use those to compute the

decomposition in equation (6.3).

In summary, the main advantage of the decomposition proposed in this chapter is

that it allows for an integrated discussion of IEOpps and IEOut and a way of studying

the influence of changes in the distribution of education on IEOut. This makes it pos-

sible to make full use of the complementary nature of IEOpp and IEOut, and to study

the influence of factors such as educational expansion on IEOut. One can easily extend

this argument, allowing us to study the roles played by gender educational inequality,

racial educational inequality, or differences in the distribution of education between

countries. A graphical representation of this decomposition is presented during the

empirical discussion.

6.4 Empirical application

This section will illustrate how the relationship between IEOpp, IEOut, and the distri-

bution of education can be used to gain a more complete picture of IEO. In particular,

this section will describe the relationship between IEOpp and IEOut and the influ-

ence of educational expansion and gender inequality on IEOut in the Netherlands for

cohorts that were 12 years old between 1905 and 1991.

6.4.1 The Dutch education system

The aim is to estimate a sequential logit model for the Netherlands and use the results

to compute the decomposition of IEOut into IEOpps and their weights. The challenge

is to come up with a model for the Dutch education system that provides a good rep-

resentation of the education system during the entire period under study and where

the assumption that each level can be achieved via only one route through the educa-

tion system is plausible. The strategy used for meeting these challenges is to create a
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Figure 6.2: Simplified model of the Dutch education system

LO

continue
p1

HAVO/VWO
p2

HBO/WOp4 l5 = 1.35

exit1− p4
l4 = 0.10

LBO/MAVO1− p2

MBOp3 l3 = −0.17

exit1− p3
l2 = −0.71

exit
1− p1

l1 = −2.10

stylized model of the Dutch education system by combining educational programmes

into ‘rougher’ categories. This helps with keeping the model representative for the

entire period, because even though the position of individual educational programmes

within the Dutch education system could have changed over time, the positions of the

rougher categorizations have remained reasonably stable. Using rougher categories

also helps relax the assumption that each level can only be achieved through one route

through the education system, as individuals are now allowed to ‘move freely’ within

the rough categories. The stylized system is presented in Figure 6.2. The simplified

representation of the Dutch education system assumes that all respondents complete

primary education (LO). After this, they face a choice between leaving the schooling

system and continuing4. If they opt for the latter choice, they have to choose be-

tween the ‘high track’ (HAVO/VWO, that is, senior general secondary education and

pre-university education) and the ‘low track’ (LBO/MAVO, that is, junior vocational

education and junior general secondary education). Once they have finished their sec-

ond diploma in either track they can choose whether or not to get a third diploma,

continuing with: MBO (senior secondary vocational education) if they are in the low

track, or HBO/WO (higher professional education and university) if they are in the

high track.

4Since I measure education as the highest finished level of education, continuing education actually

means continuing and finishing a subsequent level of eduction. Even though continuing education after

primary education was compulsory during almost the entire historical period that is being studied, finishing

a subsequent level of education was not compulsory.
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Figure 6.3: Cohorts covered by each survey (survey numbers refer to the data refer-

ences)
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6.4.2 The data

The data were obtained from the International Stratification and Mobility File (ISMF)

(Ganzeboom and Treiman, 2009). The ISMF now contains 55 surveys on the Nether-

land, carried out between 1958 and 2006. These were merged to increase the time

period covered and the number of respondents, and to lessen the effect of individ-

ual surveys’ idiosyncrasies. The cohorts covered by each survey are represented in

Figure 6.3. It shows that information on the earliest and most recent cohorts primar-

ily originates from a few surveys, while information on the middle cohorts originates

from many surveys.

The purpose of this analysis is to compare the effect of a family’s SES on the

highest achieved level of education and on probabilities of passing transitions, both

betweenmen and women and across cohorts. Time was measured by the year in which

the respondent was 12, scaled in decades since 1910. Informationwas available for the

cohorts born between 1905 and 1991. Cohort is allowed to have a non-linear effect

by representing it as a restricted cubic spline (Harrell, 2001; Royston and Parmar,

2002) as implemented in Stata (StataCorp, 2007) as the mkspline command. A

restricted cubic spline means that the variable is split up at a minimum of three points
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Figure 6.4: Number of observations per cohort
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(or knots); in this case, cohort is split up at: 1920, 1950 and 1980. Between the first

and the last knot the trend is represented by a cubic spline and before the first and after

the last knot the trend is restricted to be linear. This restriction leads to a relatively

stable non-linear curve. A family’s SES was measured according to the father’s score

on the International Socio-Economic Index (ISEI) of occupational status (Ganzeboom

and Treiman, 2003), as this measure was available for the largest number of cohorts.

The original ISEI score is a continuous variable ranging from 10 to 90, but it was

standardized to have a mean of 0 and a standard deviation of 1 for the cohort born

in 1960 (approximately the cohort with the most observations in this study). Survey

weights were used where available. The weighted number of respondents was 82,384,

and after removing respondents with missing observations on any of the variables,

71,141 respondents remained.5 The number of respondents was unequally distributed

over the cohorts, as is shown in Figure 6.4.

A scale for the level of education was needed in order to estimate the relationship

between the IEOpps and IEOut using equation (6.3). The scale that will be used in

this example is similar to the one estimated in Chapter 3, which is estimated in such a

5Various Multiple Imputation models (Little and Rubin, 2002) were tried in Chapter 4 of this dissertation

and none of them caused the conclusions to be changed.
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way that it maximized the direct effect of education on income while controlling for

the father’s occupational status. This scale does not change over time, as I established

in that chapter that even though the effect of education on occupational status changed

over time, the scale of education remained constant. However, if evidence was found

that the scale of education also changed over time, then such a changing scale could

have easily been incorporated in the decomposition. For interpretability, the scale was

coded in such a way that the mean was 0 and the variance was 1 for the cohort born in

1960.

6.4.3 Generalizing the decomposition to a tracked system

Themodel for the Dutch educational system as represented by Figure 6.2 is more com-

plicated than the model in Figure 6.1, which was used to illustrate the decomposition

of IEOut into IEOpps and weights. Whereas the model used in the example consists

of a sequence of decisions to either continue or to stop, the model for the Dutch sys-

tem also contains a ‘branching point’, or a choice between tracks. In this sense the

model is akin to those proposed by Lucas (2001) and Breen and Jonsson (2000). This

raises the question of whether the decomposition still holds in the more complicated

model. For that reason the decomposition is derived again for the more complicated

model. As before, logistic regressions were used to model the probabilities of passing

the different transitions. Again, the IEOpp and the predicted probabilities belong-

ing to transition k are represented by λk and p̂ki respectively. The predicted level of

education is now represented by equation (6.4).

E(Li) = (1− p̂1i)l1 +

p̂1i(1− p̂2i)(1− p̂3i)l2 +

p̂1i(1− p̂2i)p̂3il3 + (6.4)

p1ip̂2i(1− p̂4i)l4 +

p1ip̂2ip̂4il5

Recall that the IEOut is first derivative of equation (6.4) with respect to a family’s

SES. This derivative is shown in equation (6.5).
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∂E(Li)
∂SES

=

{1 × p̂1i(1− p̂1i) × [(1− p̂2i)(1− p̂3i)l2+

(1− p̂2i)p̂3il3+

p̂2i(1− p̂4i)l4+

p̂2ip̂4il5 − l1] } λ1 +

{p̂1i × p̂2i(1− p̂2i) × [(1− p̂4i)l4 + p̂4il5−

(1− p̂3i)l2 − p̂3il3] } λ2 +

{p̂1i(1− p̂2i) × p̂3i(1− p̂3i) × [(l3 − l2)] } λ3 +

{p̂1ip̂2i × p̂4i(1− p̂4i) × [(l5 − l4)] } λ4

(6.5)

Just as with the example described in section 6.3, IEOut is a weighted sum of the

IEOpps, the λks. The weights (the parts between curly brackets) consist of the same

three parts:

1. The proportion of people at risk (1, p̂1i, p̂1i(1 − p̂2i), and p̂1ip̂2i respecively).

2. A part (p̂ki(1 − p̂ki)) that is small if virtually everybody passes or fails that

transition and is largest when the probability of passing is 0.5.

3. The differences between the expected levels of education of those who pass the

transitions and those who do not (these are the parts in the square brackets).

This case illustrates that the relationship between IEOut and IEOpp can be ex-

tended to tracked education systems. Using the same logic, the result can be extended

to even more complex systems, such as those with more than two tracks. In that case

a multinomial logit would be used to estimate the IEOpp. The Stata (StataCorp, 2007)

package seqlogit (Buis, 2007b), which implements the decomposition, applies to

this general version of the sequential logit model. The only limitation is that if one

uses data with only the highest achieved level of education, one must ensure that for

these more complicated systems, each level can only be reached through one — and

only one — path through the education system.

6.4.4 Results

The following analysis consists of three parts. First, a descriptive analysis is per-

formed on the differences in transition probabilities between men and women, and

between cohorts. Second, the sequential response model described in the previous

section is estimated. The results from this model are used to compute the IEOpps, the

weights and the IEOut. Together these provide a detailed picture of status educational

inequality and how it is influenced by educational expansion and gender inequality.
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Third, the relationship between the transition probabilities and the weights is investi-

gated in more detail by looking at the three components of the weights: the proportion

at risk, the closeness of the transition probability to 50%, and the expected increase in

the level of education when passing a transition.

The distribution of the highest achieved level of education is shown in Figure 6.5,

for both males and females and for different cohorts. The changes over cohorts were

smoothed using the proprcspline package (Buis, 2009a) in Stata (StataCorp,

2007). As with most other countries, the Netherlands experienced a period of edu-

cational expansion during the twentieth century. The proportion of pupils who only

achieved LO (primary education) dropped dramatically, while the proportion attaining

HBO/WO (higher professional and university) education and MBO (higher secondary

vocational) strongly increased. Figure 6.5 also shows that MBO is a recent level of

education. Whereas no one from the earlier cohorts completed this level of education,

MBO completion has rapidly grown to about 40%. Furthermore, women experienced

all of these developments later than men.

Figure 6.5: Distribution of highest achieved level of education for men and women

over cohorts
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To investigate the IEOpps and IEOut and how they are influenced by gender and

educational expansion (differences in the distribution of education between men and

women and between cohorts respectively), sequential logit models were estimated

separately for both men and women. The other variables are: cohort measured as a

restricted cubic spline with knots at 1920, 1950, and 1980; the father’s occupational

status; and an interaction term with cohort. A model with a non-linear interaction

between the father’s occupational status and cohort was also estimated using the same
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restricted cubic spline as the main effect of cohort, but the non-linear terms proved to

be non-significant (χ2=4.73with 4 df for men andχ2=5.50with 4 df for women). The

results of this model are shown in Tables 6.1 and 6.2. The effects are log-odds ratios.

The main effects of the father’s occupational status are the IEOpps for the cohort

born in 1910. This shows that the IEOpps for the higher transitions (in particular

LBO/MAVO versus MBO and HAVO/VWO versus HBO/WO) are smaller than for

the the lower transitions. This pattern has also been found by many other studies

using sequential response models (Mare, 1980; Shavit and Blossfeld, 1993). Two

explanations are commonly given for this phenomenon. First, persons passing the

higher transitions are on average older than persons passing the lower transitions, and

older persons are less likely to be influenced by their parents than younger persons

(Shavit and Blossfeld, 1993). Second, selection on unobserved variables is likely to

induce a negative correlation between the observed and unobserved variables, thus

suppressing the effect of the observed variables at the higher transitions (Mare, 1981)

(although Cameron and Heckman (1998) show that this does not always have to be the

case). The interaction terms represent the change in effect for every ten-year change

in cohort. These show that the effect of the father’s occupational status changed most

for the first transition. For men, this is the only transition in which the IEOpp changed

significantly over cohorts. This pattern has already been found in the Netherlands (De

Graaf and Ganzeboom, 1993), and is being found more frequently in studies of other

countries (Breen and Jonsson, 2005).

From these results, one can derive predicted levels of education for each level

of the father’s occupational status, forming a non-linear regression line. Figure 6.6

presents these lines for three cohorts (1910, 1950, and 1990), and for men and women.

The slope of this regression line will reveal how much the expected level of education

changes when the father’s occupational status changes by one unit, thus providing the

IEOut. This slope is evaluated at the average father’s occupational status. The father’s

occupational status is standardized, so a respondent with a typical background has a

father’s status of 06. This figure shows that in all cases, having a father with a higher

socioeconomic status will lead to a higher expected level of education. Also, it shows

that while women initially suffered a disadvantage, they have overtaken men in the

most recent cohort. Finally, the results show that for the earliest cohort, the inequality

of educational outcomes for a respondent with a typical background was relatively

6However, the standardization uses the cohort born in 1960, and the average of the father’s status in-

creased over cohorts. The average of father’s occupational status remained reasonably constant until about

1930 at about -0.2 and then steadily increased to 0.5. These changes not only reflect changes in economic

structure, but also changes in the difference in the number of respondents between higher and lower sta-

tus fathers. Consequently, it is hard to give a substantive interpretation to these changes. To simplify the

analysis, a respondent with a typical background will be fixed at the typical background (average father’s

occupational status) for a typical cohort (1960).
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Table 6.1: Sequential response model for men

LO v LBO/MAVO v LBO/MAVO v HAVO/VWO v

more HAVO/VWO MBO HBO/WO

Father’s status 0.912 0.694 0.263 0.446

(15.28) (14.19) (3.44) (5.91)

Father’s status X -0.068 -0.015 -0.004 -0.033

of Cohort (-5.09) (-1.62) (-0.30) (-2.35)

RC spline term 1 0.566 0.316 0.461 0.461

of Cohort (17.54) (9.15) (9.45) (7.93)

RC spline term 2 -0.000 0.013 0.002 0.015

of Cohort (-0.01) (7.08) (0.97) (4.82)

Constant -0.590 -1.470 -2.893 -0.806

(-6.36) (-13.13) (-18.00) (-4.24)

N 43770

Log likelihood -50032.082

z statistics in parentheses

Table 6.2: Sequential response model for women

LO v LBO/MAVO v LBO/MAVO v HAVO/VWO v

more HAVO/VWO MBO HBO/WO

Father’s status 0.874 1.021 0.412 0.079

(15.33) (17.23) (5.21) (0.88)

Father’s status X -0.068 -0.063 -0.021 0.029

cohort (-5.34) (-6.00) (-1.51) (1.82)

RC spline term 1 0.743 0.103 0.129 0.345

of Cohort (21.26) (2.27) (2.33) (4.67)

RC spline term 2 -0.001 -0.008 -0.022 0.008

of Cohort (-0.24) (-3.58) (-8.27) (2.36)

Constant -1.727 -1.693 -2.431 -0.760

(-17.05) (-10.88) (-12.87) (-2.99)

N 43675

Log likelihood -45830.33

z statistics in parentheses
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small (the curve is rather flat), because everybody in the immediate neighbourhood of

the respondent with an average family background had an expected level of education

that was close to the minimum. However, in this same cohort, respondents with very

high-status parents do a lot better than the other respondents, which would lead to a

high inequality of educational outcome. In other words, in this chapter estimates of

the local educational inequality will be obtained, and if one were to estimate a measure

of global educational inequality instead, the estimate would be higher for the earliest

cohorts.

Figure 6.6: Expected highest achieved level of education according to the sequential

logit model
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Figure 6.7 shows the estimates of IEOut that have been derived from the sequential

logit model. Both education and the father’s occupational status are scaled in such a

way that the mean for the cohort 1960 is 0 and the standard deviation is 1. So this

measure of IEOut is similar to a standardized regression coefficient. IEOut displays

two striking features: the first is the trend in IEOut, which initially increases and then

decreases. The second feature is the initially lower IEOut for women. These are not

unique to the sequential logit model, since in Chapter 4 I found similar patterns using

different methods. In order to explain these patterns IEOut will be broken down into

its components, in three steps.
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Figure 6.7: IEOut according to the sequential logit model
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The first step looks at the contributions of each transition to IEOut. The IEOut is a

weighted sum of each transition’s IEOpp, so each transition contributes the amount of

weight times IEOpp to IEOut. This is shown in Figure 6.8. A striking feature is that the

final two transitions (HAVO/VWO to HBO/WO and LBO/MAVO to MBO) contribute

negligible amounts to IEOut. Furthermore, the initial increase and later decrease in

IEOut seems to be primarily the result of what happened at the first transition. Finally,

there has been a shift between the first and the second transitions as the dominant

source of IEOut.

The second step consists of breaking up each transition’s contribution into its two

parts: the weight and the IEOpp. Since the contribution is the product of these two

terms, it can be visualized as the area of a rectangle, with a height equal to the IEOpp

and a width equal to the weight. For men and women, this is shown in Figures 6.9

and 6.10. The horizontal axis shows the weights and the vertical axis the IEOpp,

while the columns represent the cohorts and the rows represent the transitions. These

figures show that the initial increase in the contribution of the first transition is due

to an increase in its weight, while the later decrease of this transition is due to both

a decrease in the weight and a decrease in the IEOpp. The increase in importance of

the second transition is entirely due to the increase in the weight of this transition.
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Figure 6.8: Contribution of each transition to IEOut
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For women, this increase in weight actually offsets a decrease in IEOpp. The low

contributions of both higher transitions are due to both low IEOpp and low weight.

The third step breaks the weights down into their three components. Figure 6.11

(a) shows the changes in the weights over time in more detail. The changes in these

weights capture the consequences of changes in the distribution of education on IEOut.

These weights are the product of three components: the proportion of people at risk

at each transition (Figure 6.11 (b)); the closeness to 50% of the proportion of peo-

ple passing (the variance) (Figure 6.11 (c)); and the difference in the expected level

of education between those passing and those failing a transition (Figure 6.11 (d)).

Figure 6.11 shows that the initial increase and the later decline in the first transition’s

influence is primarily due to the variance. Initially, any inequality at the first transition

affected few people, because a low proportion passed. As the proportion of peo-

ple passing increased, the transition received more weight, until half of the students

passed, after which inequality affected less people again because few people failed.

The increase in importance of the second transition is partly due to the variance, but

also to a strong increase in the number of students that are at risk of making this transi-

tion. Notice that these developments at the first two transitions provide a substantively

interpretable mechanism through which educational expansion influences IEOut. For

women, these developments have occurred later, leading initially to smaller weights.

The last two transitions receive relatively small weights because relatively few peo-

ple are at risk of passing these transitions, and those who pass gain relatively little.

Those who pass the first two transitions gain both the immediate increase in level of

education and the possibility of gaining an extra level of education (either MBO or
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HBO/WO), while in the third and fourth transition, people gain only the immediate

increase in level of education.
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Figure 6.9: Decomposition of IEOut into IEOpps and weights
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Figure 6.10: Decomposition of IEOut into IEOpps and weights
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Figure 6.11: Weights and their components
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Figure 6.11: Weights and their components (continued)
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6.5 Conclusion

This chapter began by making a distinction between two types of inequality of edu-

cational opportunity (IEO): inequality of educational opportunities during the process

of attaining education, which I called Inequality of Educational Opportunities proper

(IEOpp), and inequality of educational opportunities in terms of the outcome of the ed-

ucational process, which I called Inequality of Educational Outcomes (IEOut). Mare

(1981) demonstrated that differences in IEOut across cohorts (or other groups) de-

pend on both the differences in IEOpp and differences in the distribution of education.

However, this literature did not study the relationship between IEOpp, IEOut and the

distribution of education, but instead treated this relationship as a ‘black box’. This

was used as an argument for studying only IEOpps and for controlling for the distri-

bution of education rather than of studying its effects. This chapter seeks to change

this by answering the following two questions:

• How are IEOut and IEOpp related to one another, and how can this relation be

used for a meaningfully integrated analysis of IEOpp and IEOut?

• How are IEOut and the distribution of education related to one another, and

how can this relation be used for an analysis of the influence of changes in the

distribution of education on IEOut?

The first question is based on the observation that IEOpp and IEOut are not com-

peting descriptions of IEO but natural complements, because a description of a process

(the IEOpps) and a description of the outcome of that process (the IEOut) are natural

complements. Treating IEOpps and IEOut as complementary creates the challenge to

move beyond a separate discussion of these two estimates to an integrated discussion

of IEOpp and IEOut. The second question is based on the observation that the influ-

ence of changes in the distribution of education on estimates of IEO is a phenomenon

of substantive interest. One such change in the distribution of education is the general

increase in highest achieved level of education over cohorts, which is one of the most

universal and far-reaching changes in educational systems across countries during the

20th century (Hout and DiPrete, 2006). The consequences for IEO of such a major

change in the educational system deserve to be studied rather than just controlled for.

These questions are answered by showing that the sequential logit model, which

was proposed by Mare (1981) for estimating IEOpps, also implies an estimate for

IEOut. This estimate of IEOut is a weighted sum of IEOpps such that an IEOpp that

belongs to a certain transition between levels of education receives more weight if

more people are at risk of passing that transition; if passing or failing the transition is

less universal (that is, if the proportion of respondents who pass is closer to 50%); and
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if there is a larger difference in the expected level of education between people who

pass and fail that transition. This decomposition shows how IEOpp and IEOut are

related and allows for an integrated discussion of these two by showing to what extent

each transition’s IEOpp contribute to IEOut. The weights also allows one to study the

impact of changes in the distribution of education on IEOut, as these weights depend

on the distribution in a substantively interpretable way.

The application of this decomposition was illustrated using an analysis of changes

in IEO in the Netherlands between 1905 and 1991. It showed that the composition

of IEOut shifted from being primarily determined by the IEOpp of the first transi-

tion (whether or not to continue after primary education) to being primarily deter-

mined by the IEOpp of the second transition (the choice between the vocational and

the academic track). The IEOpps of the later transitions contributed relatively little

to IEOut throughout the period being studied. The differences in the distribution of

education across cohorts (educational expansion) and gender (gender educational in-

equality) were shown to explain this shift in importance between the first and second

transitions and two main features of the trend in IEOut. First, the trend over cohorts

showed an initial increase followed by a decrease. Second, the IEOut is initially lower

for women. The initial increase in IEOut can be explained by the increase in the pro-

portion of students that pass the first two transitions from less than 50% to around

50%, thus initially increasing the weights for both transitions. The weight for the sec-

ond transition also increased as more students became at risk of passing that transition.

The subsequent decrease in IEOut happened because the weight of the first transition’s

IEOpp sharply decreased since passing that transition became near universal. These

changes also explain the shift in importance between the IEOpps of the first and sec-

ond transitions. The decrease in the difference between men and women in IEOut

was caused by the fact that initially fewer women passed each transition, causing each

transition’s weight to be less for women than for men. For the later cohorts, weights

were approximately equal between men and women, because women were as likely

as men —or even more likely — to pass transitions, thus causing a convergence in

IEOut of men and women.

This chapter defined IEOut in such a way that it is meaningfully influenced by

changes in the distribution of education. There is however an important body of re-

search in this literature that uses log-linear models that summarize the IEOut in a

single odds ratio (De Graaf and Ganzeboom, 1990; Ganzeboom and Luijkx, 2004a,b).

Unlike the measure of IEOut used in this chapter, the odds ratio controls changes in

the distribution of education, that is, educational expansion. I would argue that this is

not necessarily a good thing: changes in IEOut over time are studied not because we

think that time directly influences IEOut, but that society changes over time and these

changes lead to changes in IEOut. The aim of such an analysis should be to study
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how these changes in society influenced IEOut, not sweep them under the carpet by

controlling for them.

In future research, the decomposition presented in this chapter can be generalized

in a number of ways. First, the decomposition can be applied to some models that

have been proposed to address the critique on the sequential logit model by Cameron

and Heckman (1998). The decomposition can be applied to those models that are

direct adaptations of the sequential logit model (for example: Mare 1993, 1994; and

Chapter 7 of this dissertation), but not to models that do not use the (multinomial)

logit link function (for example Lucas et al., 2007; Holm and Jæger, 2008). Second,

the decomposition requires that each level of education is assigned a value. In this

chapter, these values are constant over time, but there has been debate on whether

the values of educational categories have changed as a consequence of strong changes

in the distribution of education and the labor market (Rumberger, 1981; Clogg and

Shockey, 1984; Groot and Maassen van den Brink, 2000). If one has time-varying es-

timates of the value of the levels of education, then these could also be incorporated in

the decomposition. Changes in these values would influence IEOut through only one

of the three components of the weight: the difference in the expected highest achieved

level of education between people who pass and fail a transition. The decomposition

could thus also be used to study the impact of possible changes in the values of edu-

cational levels. Third, the analysis is based on data on the highest achieved level of

education in combination with a stylized model of the education system. The transi-

tions that respondents have passed were derived from these two pieces of information

rather than being directly observed. The main advantage of using highest achieved

levels of education is that much more data is available on the highest achieved level

of education and that this data covers a larger period than data on actual transitions.

However, an additional analysis using observed transitions is desirable. An interest-

ing question that could be answered this way would be the impact of ‘second chance

paths’, that is, paths where one switches from one track to another. The effect of

these second chance paths on IEO is not clear: on the one hand these second chance

paths could offer a way out of lower tracks for those disadvantaged students that were

disproportionably assigned to them, on the other hand students from advantaged back-

ground are generally better capable of making the best use of these ‘loopholes’. An

additional advantage of using observed transitions is that one no longer has to rely

on pseudo-cohorts to measure trends over time, as in that case one directly observes

when a transition occurred.

In conclusion, this chapter has shown how the study of educational inequality can

be enriched by studying IEOpp and IEOut as complementary pieces of information

and by studying the impact of the distribution of education, rather than by simply

controlling for it. This has the key advantage of enabling an integrated discussion
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of IEOpp and IEOut and the study of the impact of phenomena such as educational

expansion.
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Appendix: Derivation of equation (6.3)

Equation (6.3) is the first derivative of equation (6.2). Equation (6.2) is repeated be-

low:

E(Li) = (1− p̂1i)l0 + p̂1i(1− p̂2i)l1 + p̂1ip̂2i(1 − p̂3i)l2 + p̂1ip̂2ip̂3il3

whereby the p̂kis are represented by equation (6.1), repeated below:

p̂ki =
exp(αk + λkSESi)

1 + exp(αk + λkSESi)
if yk−1 i = 1

This derivative can be computed using the sum rule,7 the product rule,8, and the

derivative of a logistic regression equation.9 Using the sum rule, the first derivative

can be written as:

7Suppose that we have two functions of SES: f(SES) and g(SES). The sum rule states that the

derivative of the sum of these functions with respect to SES is (e.g. Gill, 2006, p. 190):

∂(f(SES) + g(SES))

∂SES
=

∂f(SES)

∂SES
+

∂g(SES)

∂SES

8The product rule states that the derivative of the product of these functions with respect to SES is (e.g.

Gill, 2006, p. 191):

∂(f(SES)× g(SES))

∂SES
=

∂f(SES)

∂SES
g(SES) +

∂g(SES)

∂SES
f(SES)

A special case occurs when a function of SES is multiplied by a constant c because the first derivative

of a constant is zero:

∂(cf(SES))

∂SES
=

∂f(SES)

∂SES
c+

∂c

∂SES
f(SES) =

∂f(SES)

∂SES
c

9Equation (6.1) is a logistic regression equation, which has a known first derivative (e.g. equation 3.14

Long, 1997):

∂p̂ki

∂SES
= p̂ki(1− p̂ki)λk

Together with the sum and the product rule this also implies that:

∂(1 − p̂ki)

∂SES
=

∂1

∂SES
+

∂ − p̂ki

SES
(sum rule)

= −

∂p̂ki

SES
(product rule)

= −p̂ki(1 − p̂ki)λk
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∂E(Li)

∂SES
=

∂(1− p̂1i)l0
∂SES

+
∂p1(1− p̂2i)l1

∂SES
+

∂p̂1ip̂2i(1− p̂3i)l2
∂SES

+
∂p̂1ip̂2ip̂3il3

∂SES

Using the product rule, this can be rewritten as:

∂E(Li)

∂SES
= l0

∂(1− p̂1i)

∂SES
+

l1

(

∂p̂1i

∂SES
(1− p̂2i) +

∂(1− p̂2i)

∂SES
p̂1i

)

+

l2

(

∂p̂1i

∂SES
p̂2i(1− p̂3i) +

∂p̂2i

∂SES
p̂1i(1 − p̂3i) +

∂(1− p̂3i)

∂SES
p̂1ip̂2i

)

+

l3

(

∂p̂1i

∂SES
p̂2ip̂3i +

∂p̂2i

∂SES
p̂1ip̂3i +

∂p̂3i

∂SES
p̂1ip̂2i

)

All derivatives in the equation are derivatives of logistic regression equations. To

facilitate the comparison with the previous equation, curly brackets are used to enclose

these derivatives.

∂E(Li)
∂SES

=

l0 {−p̂1i(1 − p̂1i)λ1}+

l1 ({p̂1i(1− p̂1i)λ1}(1− p̂2i) + {−p̂2i(1− p̂2i)λ2}p̂1i)+

l2 ({p̂1i(1− p̂1i)λ1}p̂2i(1− p̂3i) + {p̂2i(1 − p̂2i)λ2}p̂1i(1− p̂3i)+

{−p̂3i(1 − p̂3i)λ3}p̂1ip̂2i)+

l3 ({p̂1i(1− p̂1i)λ1}p̂2ip̂3i + {p̂2i(1− p̂2i)λ2}p̂1ip̂3i+

{p̂3i(1− p̂3i)λ3}p̂1ip̂2i)

The terms in this equation can be rearranged in such a way that all elements that

have the same IEOpp (λk) in common are grouped together.

∂E(Li)
∂SES

=

λ1 {−p̂1i(1− p̂1i)l0 + p̂1i(1 − p̂1i)(1 − p̂2i)l1+

p̂1i(1− p̂1i)p̂2i(1− p̂3i)l2 + p̂1i(1− p̂1i)p̂2ip̂3il3}+

λ2 {−p̂2i(1− p̂2i)p̂1l1 + p̂2i(1 − p̂2i)p̂1(1 − p̂3i)l2+

p̂2i(1− p̂2i)p̂1ip̂3il3}+

λ3 {−p̂3i(1− p̂3i)p̂1ip̂2il2 + p̂3i(1 − p̂3i)p̂1ip̂2il3}

Simplifying this equation will yield equation (6.3).
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