
Chapter 7

The consequences of unobserved heterogeneity

in a sequential logit model

7.1 Introduction

Many processes can be described as a nested sequence of decisions or steps. Con-

sider the three following examples. Mare (1979, 1980, 1981) describes the process

of attaining education as the result of a sequence of transitions between educational

levels, for example: 1) whether to finish secondary education or to leave school with

only primary education, and 2) whether or not to finish tertiary education given that

one finished secondary education. O’Rand and Henretta (1982) describe the decision

when to retire using the following sequence of decisions: 1) whether to retire before

age 62 or later, and 2) whether to retire before age 64 or later given that one has not

retired before age 62. Cragg and Uhler (1970) describe the demand for automobiles

as the result of the following sequence of decisions: 1) whether or not to buy an au-

tomobile, 2) whether to add an automobile or to replace an automobile given that one

decided to buy an automobile, 3) whether or not to sell an automobile or not given that

one decided not to buy an automobile. An attractive model for these processes is to es-

timate a separate logistic regression for each step or decision. These steps or decisions

are often called transitions. This model is known under a variety of names: sequential

response model (Maddala, 1983), sequential logit model (Tutz, 1991), continuation

ratio logit (Agresti, 2002), model for nested dichotomies (Fox, 1997), and the Mare

model (Shavit and Blossfeld, 1993). This model has however been subject to an in-

fluential critique by Cameron and Heckman (1998). Their main point starts with the

observation that the sequential logit model, like any other model, is a simplification

of reality and will not include all variables that influence the probability of passing

a transition. The presence of these unobserved variables is often called unobserved

heterogeneity, and it will lead to biased estimates, even if these unobserved variables

are not confounding variables. There are two mechanisms through which these un-

observed non-confounding variables will influence the results. The first mechanism,

which I will call the averaging mechanism, is based on the fact that leaving a vari-

able out of the model means that one models the probability of passing a transition

averaged over the variable that was left out. The effect of the remaining variables on
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this average probability of passing a transition is not the same as the effect of these

variables on the probability that an individual passes that transition, because the rela-

tionship between the variable left out of the model and the probability is non-linear

(Neuhaus and Jewell, 1993; Cameron and Heckman, 1998; Allison, 1999). The sec-

ond mechanism, which I will call the selection mechanism, is based on the fact that

even if a variable is not a confounding variable at the initial transition because it is un-

correlated with any of the observed variables, it will become a confounding variable at

the higher transitions because the respondents who are at risk of passing these higher

transitions form a selected sub-sample of the original sample (Mare, 1980; Cameron

and Heckman, 1998).

The aim of this chapter is to propose a sensitivity analysis with which one can in-

vestigate the consequences of unobserved non-confounding variables in a sequential

logit model. This will be done by specifying a set of plausible scenarios concern-

ing this unobserved variability and estimating the individual-level effects within each

of these scenarios, thus creating a range of plausible values for the individual-level

effects.

Any method for studying such individual-level effects will have to deal with the

fact that it tries to control for variables that have not been observed. This is a prob-

lem that also occurs with other models that try to estimate causal effects (Holland,

1986). A common strategy in these causal models is to use information that might be

available outside the data. The clearest example of this is the experiment in which one

knows that the respondents have been randomly assigned to the treatment and the con-

trol group, and it is this information that is being used to control for any unobserved

variables. Various variations on this strategy have been proposed for non-experimental

settings (Morgan and Winship, 2007), for example one might know that a variable in-

fluences the main explanatory variable but not the outcome variable, in which case

one can use this variable as an instrumental variable, or one might know that all vari-

ables influencing the main explanatory variable are present in the data, in which case

one can use propensity score matching. An example of such a strategy that has been

applied to the sequential logit model is the model by Mare (1993, 1994), who used

the fact that siblings are likely to have a shared family background. If one has data

on siblings, one can thus use this information for controlling for unobserved variables

on the family level. Another example of this strategy is the model used by Holm and

Jæger (2008), who use instrumental variables in a sequential probit model1 to identify

individual-level effects. The strength of this strategy depends on the strength of the

information outside the data that is being used to identify the model. However, such

external information is often not available. In those cases, one can still use these mod-

1The sequential probit model is similar to the sequential logit model except that the probit link function

is used rather than the logit link function.
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els, except that the identification is now solely based on untestable assumptions. This

implies a subtle shift in the goal of the analysis: instead of trying to obtain an empir-

ical estimate of a causal effect, one is now trying to predict what would happen if a

certain scenario were true. This is not unreasonable: the causal effects are often the

quantity of interest, and if it is not possible to estimate them, then the results of these

scenarios are the next best thing. However, the modelling challenge now changes from

making the best use of some information outside the data to finding the most informa-

tive comparison of scenarios. The goal of such an analysis is to find a plausible range

of estimates of the causal effect and to assess how sensitive the conclusions are to

changes in the assumptions (Rosenbaum and Rubin, 1983; Rosenbaum, 2002; DiPrete

and Gangl, 2004). I will propose a set of scenarios that will allow one to directly ma-

nipulate the source of the problem: the degree of unobserved heterogeneity. This way

one can compare how the results would change if there is a small, moderate, or large

amount of unobserved heterogeneity.

This chapter will start with a more detailed discussion of how unobserved hetero-

geneity can cause bias in the estimates of the effect of the observed variables, even

if the unobserved variables are initially non-confounding variables. I will then pro-

pose a sensitivity analysis, by specifying a series of scenarios concerning the unob-

served variables. The estimation of the effects within these scenarios will be discussed

next. Finally, the method will be illustrated by replicating an analysis of the effect of

parental background on educational attainment in the Netherlands by De Graaf and

Ganzeboom (1993) and in Chapter 2, and assessing how robust their results are for

changes in assumptions about unobserved heterogeneity.

7.2 The sequential logit model and two effects of unob-

served heterogeneity

The effect of unobserved heterogeneity in a sequential logit model is best explained

using an example. Figure 7.1 shows a hypothetical process, which is to be described

using a sequential logit model. There are three levels in this process: A, B and C. This

process consists of two transitions: the first transition is a choice between A on the

one hand and B and C on the other. The second transition is a choice between B and C

for those who have chosen B and C in first transition. Figure 7.1 could be a represen-

tation of both the educational attainment example and the retirement example in the

introduction. In the former case, A would correspond to primary education, B would

correspond to secondary education, and C would correspond to tertiary education. In

the latter case, A would correspond to retire before age 62, B would correspond to

retire between age 62 and 64, and C would correspond to retire after age 64.
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Figure 7.1: Hypothetical process

A,B,C

B,Cp1

Cp2

B1− p2

A1− p1

The sequential logit model models the probabilities of passing these transitions.

This is done by estimating a logistic regression for each transition on the sub-sample

that is at risk, as in equations (7.1) and (7.2). Equation (7.1) shows that the probability

labelled p1 in Figure 7.1 is related to two explanatory variables x and z through the

function Λ(), while equation (7.2) shows the same for the probability labelled p2 in

Figure 7.1. The function Λ() is defined such that Λ(u) = exp(u)
1+exp(u) . This function

ensures that the predicted probability always remains between 0 and 1, by modelling

the effects of the explanatory variables as S-shaped curves. The coefficients of x and z

(β11, β21, β12, and β22) can be interpreted as log odds ratios, while the constants (β01

and β02) represent the baseline log odds of passing the first and second transitions.

p1 = Pr(y ∈ {B,C}|x, z) = Λ(β01 + β11x+ β21z) (7.1)

p2 = Pr(y ∈ {C}|x, z, y ∈ {B,C}) = Λ(β02 + β12x+ β22z) (7.2)

Table 7.1 turns Figure 7.1 and equations (7.1) and (7.2) into a numerical example.

Panel (a) shows the counts, the probabilities of passing, the odds and log odds ratios

when z is observed, while panel (b) shows what happens in this example when z is not

observed. Both x and z are dichotomous (where low is coded as 0 and high as 1), and

during the first transition x and z are independent, meaning that z is not a confounding

variable at the first transition. The sequential logit model underlying this example is

presented in equations (7.3) and (7.4).

Pr(y ∈ {B,C}|x, z) = Λ[log(.333) + log(3)x+ log(3)z] (7.3)

Pr(y ∈ {C}|x, z, y ∈ {B,C}) = Λ[log(.333) + log(3)x+ log(3)z] (7.4)

Consider the first transition in panel (a). The constant in the logistic regression

equation is the log odds of passing for the group with value 0 for all explanatory vari-
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Table 7.1: Example illustrating the consequences of not observing a non-confounding

variable (z)

(a) while observing z

y

transition z x A B, C N Pr(pass) odds(pass) log odds ratio

1

low
low 300 100 400 0.25 0.333

log(3)
high 200 200 400 0.5 1

high
low 200 200 400 0.5 1

log(3)
high 100 300 400 0.75 3

B C

2

low
low 75 25 100 0.25 0.333

log(3)
high 100 100 200 0.5 1

high
low 100 100 200 0.5 1

log(3)
high 75 225 300 0.75 3

(b) without observing z

y

transition x A B, C N Pr odds log odds ratio

1
low 500 300 800 0.375 0.6

log(2.778)
high 300 500 800 0.625 1.667

B C

2
low 175 125 300 0.417 0.714

log(2.6)
high 175 325 500 0.65 1.857

ables, so the constant is in this case log(.333). The effect of x in a logistic regression

equation is the log odds ratio. Within the low z group, the odds of passing for the

low x group is .333 and the odds of passing for the high x group is 1, so odds ratio

is 1
.333 = 3, and the log odds ratio is log(3). The effect of x in the high z group is

also log(3), so there is no interaction effect between x and z. The effect of z can be

calculated by comparing the odds of passing for a high z and a low z individual within

the low x group, which results in a log odds ratio of log(3). There is no interaction

between x and z, so the log odds ratio for z within the high x group is also log(3).

Panel (b) shows what happens if one only observes x and y but not z. For example, in

that case 300 + 200 = 500 low x persons are observed to have failed the first transition

and 100 + 200 = 300 low x persons are observed to have passed the first transition.

The resulting counts are used to calculate the probabilities, odds, and log odds ratios.

Panel (b) shows that the log odds ratios of x are smaller than those computed in panel

(a). Leaving z out of the model thus resulted in an underestimation of the effect of x

for both the first and the second transition, even though z was initially uncorrelated

with x.
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This example can be used to illustrate both mechanisms throughwhich unobserved

heterogeneity can lead to biased estimates of the individual-level effects. First, the

selection mechanism can explain part of the underestimation of the effect of x at the

second transition. A characteristic of the sequential logit model is that even if z is

not a confounding variable during the first transition, it will become a confounding

variable during the later transitions (Mare, 1980; Cameron and Heckman, 1998). The

examplewas created such that z and x are independent during the first transition, as the

distribution of z is equal for both the low x group and high x group. As a consequence,

z cannot be a confounding variable during the first transition. But this is no longer true

during the second transition. For the high x group, the proportion of persons with a

high z is 300/500 = .6, while for the low x group that proportion is 200/300 = .667.

The selection at the first transition has thus introduced a negative correlation between

x and z, and z has become a confounding variable. If one does not observe z, and

thus can not control for z, one would expect to underestimate the effect of x at the

second transition. This could in part explain the underestimation of the effect of x in

the second transition in panel (b) of Table 7.1, but not the underestimation of the effect

of x in the first transition.

The averaging mechanism can explain the underestimation of the effect of x dur-

ing the first transition. The models implicit in panels (a) and (b) have subtly different

dependent variables: in panel (a) one is modelling the probability that an individ-

ual passes the transitions, while in panel (b) one models the average probability of

passing the transitions. The two result in different estimates because the relationship

between the unobserved variables and the probabilities is non-linear. This issue is

discussed in terms of the sequential logit model by Cameron and Heckman (1998).

It also occurs in other non-linear models, and has been discussed by Neuhaus et al.

(1991), Allison (1999) and Mood (2010). It is also closely related to the distinction

between population average or marginal models on the one hand and mixed effects

or subject specific models on the other (Fitzmaurice et al. 2004, chapter 13; Agresti

2002, chapter 12). The averaging of the probabilities can be seen in Table 7.1: for

example the probability of passing transition 2 for low x individuals when not con-

trolling for z is (100 × 0.25 + 200 × 0.5)/300 = 0.417. The consequence of this is

that if we think that equations (7.1) and (7.2) form the true model for the probabili-

ties of passing the transitions, then the true model for the probabilities averaged over

z should be represented by equations (7.5) and (7.6), where Ez(u) is the average of

u over z. Instead, the model represented by equations (7.7) and (7.8) are estimated

when z is not observed and z is thus left out of the model. The two models are not

the equivalent because Λ() is a non-linear transformation. Neuhaus and Jewell (1993)

give an approximation of how β∗
11 and β

∗
12 deviate from β11 and β12: β

∗
11 and β

∗
12 will

be smaller than β11 and β12, and the difference between the estimates β
∗
11 and β

∗
12 and



Unobserved heterogeneity 143

the estimates β11 and β12 will increase when the variances of β21z and β22z increase

and when the probability of passing is closer to 50%.

Ez(Pr[y ∈ {B,C}|x, z]) = Ez(Λ(β01 + β11x+ β21z)) (7.5)

Ez(Pr[y ∈ {C}|x, z, y ∈ {B,C}]) = Ez(Λ(β03 + β12x+ β22z)) (7.6)

Ez(Pr[y ∈ {B,C}|x, z]) = Λ(β∗
01 + β∗

11x) (7.7)

Ez(Pr[y ∈ {C}|x, z, y ∈ {B,C}]) = Λ(β∗
02 + β∗

12x) (7.8)

7.3 A sensitivity analysis

The previous section discussed what kind of problems unobserved variables might

cause. The difficulty with finding a solution for these problems is that it is obviously

challenging to control for something that has not been observed. One possible solution

is to perform a sensitivity analysis: specify a number of plausible scenarios concerning

the unobserved variables, and estimate the effects within each scenario. The aim of

this type of analysis is not to get an empirical estimate of the effect per se, but to

assess how important assumptions are for the estimated effect and to get a feel for the

range of plausible values for the effect. There are many potential problems that could

all simultaneously influence the results of an analysis and whose influence could all

be investigated using sensitivity analysis. However, to give the analysis focus it is

often better to narrow down the scope of the sensitivity analysis by concentrating

on a specific subset of potential problems. For example, the aim of the sensitivity

analysis proposed in this chapter is to assess the sensitivity to the effect of unobserved

heterogeneity through the selection mechanism and averaging mechanism.

A key step in creating such scenarios is to create a set of reasonable scenarios

concerning the unobserved variable z. In the example in the previous section, z was

assumed to be dichotomous, because that would result in an easy numerical example.

When creating the scenarios, it is more useful to think about z as not being a single

unobserved variable but as a (weighted) sum of all the unobserved variables. Such a

sum of random variables can usually be well approximated by a normal distribution,

even if the constituent variables are non-normally distributed. So, it is reasonable to

represent the distribution of the composite unobserved variable with a normal distri-

bution. There are two equivalent ways of thinking about the scale of this compound

unobserved variable. It is sometimes convenient to think of the resulting variable as
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being standardized, such that mean is 0 and the standard deviation is 1. This way the

‘effect’ — call that γ — can be compared with the effects of standardized observed

variables to get a feel for the range of reasonable values of this ‘effect’. Alternatively,

it is possible to think of the composite unobserved variable as just being an unstan-

dardized random variable or error term. In this case, the standard deviation of this

random variable is the same as γ. The standardized unobserved variable will be re-

ferred to as z, while the unstandardized unobserved variable will be referred to as ε

in order to distinguish between the two. The two are related in the following way:

γz = ε.

In this chapter I will propose a set of scenarios based on this representation of the

unobserved variable. This basic scenario is introduced in equations (7.9) till (7.12). In

this example there are two transitions, with the probabilities of passing these transi-

tions influenced by two variables x and z, where z is as defined above. The observed

dependent variables are the probabilities of passing the two transitions averaged over

z. So by estimating models (7.9) and (7.11), one can recover the true effects of x. To

estimate it, all one needs to know is the distribution of γz (= ε) and to integrate over

this distribution, as in equations (7.10) and (7.12). The mean of ε will be set at 0 and

a standard deviation equal to γ, which is a priori fixed in the scenario. Furthermore,

it assumes that a person’s value on ε will not change over the transitions, implicitly

assuming that both the value on z and the effect of z (γ) will not change over the

transitions2.

Eε(Pr[y ∈ {B,C}|x, ε]) = Eε(Λ(β01 + β11x+ γz
︸︷︷︸

ε

)) (7.9)

=

∫

Λ(β01 + β11x+ ε)f(ε)dε (7.10)

Eε(Pr[y ∈ {C}|x, ε, y ∈ {B,C}]) = Eε(Λ(β02 + β12x+ γz
︸︷︷︸

ε

)) (7.11)

=

∫

Λ(β02 + β12x+ ε)

f(ε|y ∈ {B,C})dε (7.12)

The effects in each scenario are estimated using maximum likelihood. Referring

back to Figure 7.1, the likelihood function for an individual i can be written as equa-

2All these assumptions can be relaxed, but relaxing these assumptions will quickly lead to an unmanage-

able number of scenarios. Moreover, these complications would not contribute to the aim of these scenarios,

which assess the sensitivity of estimates to unobserved heterogeneity through the selection mechanism and

averaging mechanism.
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tion (7.13), that is, the probability of observing someone with valueA equals the prob-

ability of failing the first transition, the probability of observing someone with value

B equals the probability of passing the first transition and failing the second transi-

tion, and the probability of observing someone with value C equals the probability of

passing both transitions.

Li =







1− p1i if yi = A

p1i × (1− p2i) if yi = B

p1i × p2i if yi = C

(7.13)

By replacing p1i with equation (7.10) and p2i with equation (7.12), one gets a

function that gives the probability of an observation, given the parameters β. This

probability can be computed for each observation and the product of these form the

probability of observing the data, given a set of parameters. Maximizing this function

with respect to the parameters give the maximum likelihood estimates. These esti-

mates include the true effects of the variable of interest x assuming that the model for

the unobserved heterogeneity, in particular the standard deviation of ε, is correct.

The difficulty with this likelihood is that there are no closed form solutions for the

integrals in equations (7.10) and (7.12). This can be resolved by numerically approxi-

mating these integrals using maximum simulated likelihood (Train, 2003). Maximum

simulated likelihood uses the fact that the integral is only there to compute a mean

probability. This mean can be approximated by drawing at random many values for ε

from the distribution of ε, computing the probability of passing a transition assuming

that this randomly drawn value is the true value of ε, and then computing the average

of these probabilities. This approach can be further refined by realizing that using true

random draws is somewhat inefficient as these tend rather to cluster. Increasing the

efficiency is important as these integrals need to be computed for each observation,

meaning that these simulations need to be repeated for each observation. One can

cover the entire distribution with less draws if one can use a more regular sequence

of numbers. An example of a more regular sequence of numbers is a Halton (1960)

sequence. A Halton sequence will result in a more regular series of quasi-random

draws from a uniform distribution. These quasi-random draws can be transformed

into quasi-draws from a normal distribution by applying the inverse cumulative nor-

mal distribution function. These are then used to compute the average probability of

passing the first transition, as is shown in equation (7.14), where m represents the

number of draws from the distribution of ε. At subsequent transitions, the distribution

of ε is no longer a normal distribution, but conditional on being at risk. The integral

over this distribution is computed by drawing ε from a normal distribution as before,

but then computing a weighted mean whereby each draw is given a weight equal to
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the probability of being at risk assuming that that draw was the true ε. In the appendix

to this chapter I show that this is a special case of importance sampling (Robert and

Casella, 2004, 90–107). This procedure is implemented in the seqlogit package

(Buis, 2007b) in Stata (StataCorp, 2007), using the facilities for generating Halton

sequences discussed by Drukker and Gates (2006). This package is documented in

Technical Materials II.

Eε(Pr(y ∈ {B,C}|x, ε)) ≈
1

m

m∑

j=1

Λ(β01 + β11x+ εj) (7.14)

Eε(Pr(y ∈ {C}|x, ε, y ∈ {B,C}) ≈
∑

m
j=1

[
Pr(y∈{B,C}|x,εj)Λ(β02+β12x+εj)

]

∑
m
j=1

Pr(y∈{B,C}|x,εj)

(7.15)

7.4 An example: The effect of family background on

educational attainment in the Netherlands

An important application for the sequential logit model is the study of the influence

of family background on educational attainment (for recent reviews see: Breen and

Jonsson, 2005; Hout and DiPrete, 2006). The potential problems that unobserved

variables can cause were recognized from the time that the sequential logit model was

introduced in this literature (Mare, 1979, 1980, 1981), but interest in this issue has

been revived by the critique from Cameron and Heckman (1998). However, only a

limited number of empirical studies have tried to actually account for unobserved het-

erogeneity (for exceptions see: Mare, 1993; Rijken, 1999; Chevalier and Lanot, 2002;

Lauer, 2003; Arends-Kuenning and Duryea, 2006; Colding, 2006; Lucas et al., 2007;

Holm and Jæger, 2008). The method proposed in this paper will be illustrated by repli-

cating an analysis that does not control for unobserved heterogeneity by De Graaf and

Ganzeboom (1993) and in Chapter 2 of the effect of father’s occupational status and

education on transition probabilities between educational levels in the Netherlands,

and assessing how sensitive the conclusions are to assumptions about unobserved

heterogeneity. The original study by De Graaf and Ganzeboom (1993) was part of

an influential international comparison of the effect of family background on educa-

tional attainment (Shavit and Blossfeld, 1993). It used 10 Dutch surveys that were

post-harmonized as part of the International Stratification and Mobility File [ISMF]

(Ganzeboom and Treiman, 2009). In Chapter 2 I updated this analysis by using an

additional 33 Dutch surveys that have since been added to the ISMF.



Unobserved heterogeneity 147

Figure 7.2: Simplified model of the Dutch education system

A,B,C,D

B,C,D

p1

C,D
p2

D
(=tertiary)p3

C
(=higher
secondary)

1− p3

B
(=lower
secondary)

1− p2

A
(=primary)

1− p1

7.4.1 The data

The total of 43 surveys were held between 1958 and 2006. Only male respondents

older than 25 are used in the analysis. These surveys contain 35,846 men with valid

information on all the variables used in the model. Family background is measured

as the father’s occupational status and the father’s highest achieved level of educa-

tion. Time was measured by 10-year birth cohorts covering the cohorts that were born

between 1891–1980. The main effect of time is added as a set of dummies, while

the effects of the family background variables is allowed to change linearly over the

cohorts.

The father’s occupational status was measured using the International Socio-Economic

Index (ISEI) of occupational status (Ganzeboom and Treiman, 2003), which originally

ranged between 10 and 90 and was recoded to range between 0 and 8. In concordance

with De Graaf and Ganzeboom (1993) and Chapter 2, education of both the father

and the respondent were measured in four categories: primary education (LO), lower

second secondary education (LBO and MAVO), higher secondary education (HAVO,

MBO, and VWO), and tertiary education (HBO and WO). The value of the father’s

highest achieved level of education was created by giving these educational categories

the numerical values 1 till 4. The transitions that were studied by De Graaf and Ganze-

boom (1993) and in Chapter 2 are: 1) from primary education or less to a diploma in

secondary or tertiary education; 2) from a diploma in lower secondary education to a

diploma in higher secondary or tertiary education; 3) from a diploma in higher sec-

ondary education to completed tertiary education. These transitions are displayed in

Figure 7.2.
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7.4.2 The results

The effects of father’s occupational status and education are estimated for four sce-

narios, and the results are represented in the different columns in Table 7.2. The first

scenario assumes that the standard deviation of ε is zero, which is a replication of

the model used by De Graaf and Ganzeboom (1993) and in Chapter 2. This replica-

tion shows three main patterns. First, both father’s occupational status and father’s

education have a positive effect on the probability of passing transitions. Second,

this effect decreases over transitions. Third, the effect of father’s education decreases

over cohorts during all three transitions while the effect of father’s occupational status

clearly decreases over cohorts for the first transition, but the trend is non-significant

negative during the second transition and non-significant positive during the third tran-

sition. These patterns are the same as those found by De Graaf and Ganzeboom (1993)

and in Chapter 2 with the exception of the significant negative trend in the effect of

father’s education during the third transition, which was not found to be significant by

De Graaf and Ganzeboom (1993).

The remaining three scenarios assume that the standard deviation of ε is .5, 1, and

2. As was discussed before, the standard deviations represent the effects (log odds

ratios) if the unobserved variable z is a standardized variable. To put these scenarios

into perspective, one can look at the effects of father’s occupational status and educa-

tion when both are standardized in the earliest cohort at the first transition, when the

effects are largest. These standardized effects are .823 for father’s occupational status

and 1.453 for father’s education3. So, the values .5, 1, and 2 capture a reasonable

range of values for the effect of a standardized unobserved variable.

The results from the different scenarios, as presented in the remaining columns

of Table 7.2, show that the qualitative conclusions remain unchanged, that is, those

effects that were significant remained significant and those that were not significant

remained not significant. However, the size of the effects of father’s occupational sta-

tus and education and their trends did change over the scenarios: the effects increased

as the amount of unobserved heterogeneity increased, while the trends in the effects

over time became more negative, and the decrease in the effects over transitions be-

comes less pronounced. This is also shown in Figures 7.3 and 7.4. In addition, these

figures show that difference between the scenarios decreased over time, indicating

that the bias due to unobserved heterogeneity decreased over time. This is particularly

strong for the first transition.

In section 7.2 I discussed that unobserved heterogeneity could influence the re-

sults through two mechanisms. First, the averaging mechanism is based on the fact

3The effects of the unstandardized variables are presented in Table 7.2, and the standard deviation of

father’s occupational status is 1.55 and the standard deviation of father’s education is 1.01.
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Table 7.2: Log odds ratios in models for men assuming different degrees of unob-

served heterogeneity (the main effects of the cohort dummies and the constant are not

displayed)

sd(ε) = 0 sd(ε) = .5 sd(ε) = 1 sd(ε) = 2
primary v lower secondary

father’s education 1.439 1.496 1.641 2.092

(11.50) (11.56) (11.70) (12.10)

father’s education X cohort -0.117 -0.124 -0.142 -0.192

(-4.80) (-4.96) (-5.28) (-5.87)

father’s occupation 0.531 0.558 0.628 0.833

(13.08) (13.22) (13.46) (13.73)

father’s occupation X cohort -0.057 -0.061 -0.070 -0.097

(-6.34) (-6.57) (-7.02) (-7.60)

lower secondary v higher secondary

father’s education 0.713 0.796 0.995 1.512

(11.79) (12.50) (13.86) (15.94)

father’s education X cohort -0.026 -0.034 -0.051 -0.092

(-2.34) (-2.88) (-3.88) (-5.31)

father’s occupation 0.294 0.333 0.424 0.655

(8.10) (8.73) (9.96) (11.90)

father’s occupation X cohort -0.010 -0.014 -0.023 -0.045

(-1.49) (-2.01) (-2.98) (-4.42)

higher secondary v tertiary

father’s education 0.445 0.539 0.748 1.252

(7.11) (8.14) (10.05) (12.99)

father’s education X cohort -0.031 -0.039 -0.057 -0.099

(-2.78) (-3.34) (-4.31) (-5.70)

father’s occupation 0.149 0.187 0.275 0.486

(3.41) (4.07) (5.34) (7.42)

father’s occupation X cohort 0.010 0.007 0.001 -0.011

(1.25) (0.87) (0.15) (-0.97)

(z-values in parentheses)
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Figure 7.3: The effect of father’s occupational status
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Figure 7.4: The effect of father’s education
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that a model that leaves out the unobserved variables models the average probability

of passing the transitions rather than an individual’s probability of passing. This will

lead to an underestimation of the effect if one leaves the variable out of the model,

and this bias will be larger when the variance of the unobserved variable increases and

when the probability of passing is closer to 50% (Neuhaus and Jewell, 1993). Second,

the selection mechanism is based on the fact that after the first transition the unob-

served variable becomes correlated with the observed variables. This means that at

later transitions, leaving the unobserved variable out of the model will result in omit-

ted variable bias, even if the unobserved variable was not a confounding variable at

the first transition. A key element in both mechanisms is the distribution of the un-

observed variable. Table 7.3 shows how the distribution of the unobserved variable

changes over the transitions for the different scenarios for men born between 1931

and 1940 (the largest cohort in the data). The first row shows the proportion of re-

spondents at risk of passing this transition, which indicates how selective a transition

is. The second and third set of rows shows for each scenario and transition the corre-

lation between the unobserved variable and father’s occupational status, and between

the unobserved variable and father’s education, respectively. This correlation captures

the selection mechanism. At the first transition this correlation is by definition 0, but

at later transitions it becomes negative, leading to an underestimation of the effect

of father’s occupational status and education at the later transitions. The correlation

becomes larger at later transitions and when the variance of the unobserved variable

increases. The correlation between ε and father’s education is stronger than the cor-

relation between ε and the father’s occupational status. The reason for this is that the

correlation is the result of the selection on all the variables at the earlier transitions,

and the selection on father’s education is stronger than the selection on father’s occu-

pational status (the standardized coefficients for the main effects are, as was mentioned

before, 1.453 and .823 respectively). The fourth set of rows shows that the variance

of the unobserved variable, which plays a key role in the averaging mechanism, and

which decreases somewhat over the transitions, but not much. The fifth set of rows

shows that the respondents score higher than average on the unobserved variable at

the higher transition.
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Table 7.3: Changes in the distribution of the unobserved variable over the transitions for men born between 1931 and 1940

primary v lower secondary v higher secondary v

lower secondary higher secondary tertiary

Pr(at risk) 1 .837 .487

corr(ε, sd(ε) = 0 0 0 0

father’s occupation) sd(ε) = 0.5 0 -0.028 -0.070

sd(ε) = 1 0 -0.051 -0.124

sd(ε) = 2 0 -0.081 -0.187

corr(ε, sd(ε) = 0 0 0 0

father’s education) sd(ε) = 0.5 0 -0.048 -0.111

sd(ε) = 1 0 -0.087 -0.193

sd(ε) = 2 0 -0.134 -0.282

sd(ε) sd(ε) = 0 0 0 0

sd(ε) = 0.5 0.5 0.492 0.480

sd(ε) = 1 1 0.950 0.883

sd(ε) = 2 2 1.764 1.531

mean(ε) sd(ε) = 0 0 0 0

sd(ε) = 0.5 0 0.038 0.132

sd(ε) = 1 0 0.143 0.460

sd(ε) = 2 0 0.460 1.313
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Table 7.3 gives an idea of the distribution of the unobserved variable at one point

in time, but it cannot explain why this bias changed over time, as was shown in Fig-

ures 7.3 and 7.4. The way unobserved heterogeneity influences the results is a func-

tion of the proportion of respondents that are at risk at each transition and these have

changed considerably over time as is shown in Figure 7.5. As in most other countries,

younger cohorts will on average receive more education than the older cohorts, so the

proportion of respondents at risk increases over time. Figure 7.5 also explains why the

bias in the first transition decreases. The bias in the first transition is due to the averag-

ing mechanism, and the bias due to the averaging mechanism will decrease when the

probability of passing approaches 1 (or 0) (Neuhaus and Jewell, 1993). The proportion

of respondents that passed the first transition is the proportion at risk of passing the

second transition. Figure 7.5 shows that this proportion increased dramatically and is

now virtually 1, thus leading to a reduction in the size of the bias. Figure 7.6 showed

how the correlation between the father’s occupational status and education and the un-

observed variable changed over time. It shows that this correlation strongly decreased

over time as the higher transitions became less selective, and thus that the bias due

to the selection mechanism decreased over time. Figure 7.7 shows that the standard

deviation of the unobserved variable hardly changes over time. Figure 7.8 shows how

the mean of the unobserved variable decreases at each subsequent transition and how

these transitions have become less selective over time.

In summary, this replication showed that the qualitative conclusions fromDe Graaf

and Ganzeboom (1993) and Chapter 2 are largely robust against assumptions on unob-

served heterogeneity. However, the scenarios also showed that the size of the effects

and the trends are likely to have been underestimated because the original sequential

logit models estimated the effect on the average probability of passing rather than on

an individual’s probability of passing, and because the unobserved variable and the

observed variables became negatively correlated at the higher transitions.
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Figure 7.5: The proportion of respondents at risk of passing each transition
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Figure 7.6: The correlation between the unobserved variable and father’s occupational

status and father’s education
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Figure 7.7: The standard deviation of the unobserved variable
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Figure 7.8: The mean of the unobserved variable
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7.5 Conclusion and discussion

The aim of this chapter is to present a sensitivity analysis that can be used to inves-

tigate the consequences of unobserved variables in a sequential logit model, and in

particular the consequences of leaving a non-confounding variable out of a sequen-

tial logit model as discussed by Cameron and Heckman (1998). The bias that these

unobserved variables cause are shown to be the result of two mechanisms: first, the

averaging mechanism is based on the fact that when a variable is left out of the model,

one models the probability of passing the transitions averaged over the variable that

is left out. As a consequence, just leaving the unobserved variable out of the model

will lead to estimates of effects of the observed variables on the probability of pass-

ing the transitions averaged over the unobserved variables rather than the effects on

the individual’s probability of passing. These two are different because the unob-

served variable is related to the probabilities through a non-linear function. Second,

the selection mechanism is based on the fact that a variable that is not a confounding

variable at the first transition is likely to become a confounding variable at the later

transitions. The reason for this is that the process of selection at the earlier transitions

will introduce correlation between the observed and unobserved variables.

The method proposed in this chapter to investigate the consequences of unob-

served heterogeneity is to perform a sensitivity analysis by specifying a set of scenar-

ios regarding the extent of unobserved heterogeneity, and estimating the effects of the

observed variables given those scenarios. This will not give an empirical estimate of

the effects of interest, but does give an idea about the sensitivity of the estimates to

assumptions about unobserved heterogeneity, and direction of the bias, the size of the

bias, and the range of likely values of the effect. The scenarios that have been pro-

posed in this chapter are constructed in the following way: the unobserved variable

is normally distributed, for each individual the value of this unobserved variable is

assumed to remain constant over the transitions, and the effect of the unobserved vari-

able also remains constant over the transitions. The scenarios differ from one another

with respect to the variance of the unobserved variable. This way one can compare

what happens to the effects of the observed variables when there is a small, medium,

and large amount of unobserved heterogeneity. Moreover, it is possible to recover the

distribution of the unobserved variable at the later transitions. This makes it possible

to see how, in each scenario, the correlation between the observed and unobserved

variables change over the transitions, and/or over a third variable, for example time.

The effects of the observed variables within each scenario are estimated by maximum

likelihood. The likelihood is defined by integrating over the unobserved variable,

which is done using Maximum Simulated Likelihood (Train, 2003).

This method was illustrated by replicating a study by De Graaf and Ganzeboom
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(1993) and in Chapter 2 on the effect of the father’s occupational status and educa-

tion on the offspring’s educational attainment. The proposed analysis showed that the

results of statistical tests were rather robust to changes in the assumptions about unob-

served heterogeneity, but that the effects of both the father’s occupational status and

the father’s education were likely to be underestimated, as these effects were stronger

in scenarios with more unobserved heterogeneity. Scenarios with more unobserved

heterogeneity also resulted in a stronger downward trend over time in the effect of

father’s occupational status and education. The decrease in the effect of father’s oc-

cupational status and education over transitions became less in scenarios with more

unobserved heterogeneity. This indicates that the commonly found pattern of decreas-

ing effects of family background variables over transitions is at least in part due to

unobserved heterogeneity.

This chapter can be seen as part of a larger effort aimed at obtaining an empirical

estimate of the causal effect of family background while controlling for unobserved

variation between individuals (Mare, 1993, 1994; Cameron and Heckman, 1998; Lu-

cas et al., 2007; Holm and Jæger, 2008). The challenge of this literature is that it tries

to solve an unsolvable problem, since obtaining an empirical estimate is by definition

incompatible with controlling for unobserved variation. On the one hand this means

that it is very unlikely that a single study can build a completely convincing empirical

argument for such an effect. On the other hand, that does not mean that estimates

obtained in these studies contain no information whatsoever. The key is that each of

these methods exploits different parts of the data to get an approximation of the effect.

For example, Mare (1993, 1994) uses the nesting of individuals within families, Lucas

et al. (2007) and Holm and Jæger (2008) use the presence of instrumental variables,

and Mare (2006) uses the strong assumption that all changes in the effect of the ex-

planatory variables over transitions is due to unobserved heterogeneity. In the long

run, these differences in strategy can be used to get a plausible range for the causal

effect of family background by collecting a sufficient body of evidence using these

different methods, followed by an analysis of how the differences in strategy has led

to the differences and similarities in the conclusions of these studies.
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Appendix: Sampling from the distribution of ε condi-

tional on having passed the previous transitions

One method of sampling from a distribution is importance sampling (Robert and

Casella, 2004, 90–107). This appendix will show that the method used in this chapter

is a special case of importance sampling. The idea behind importance sampling is

that instead of sampling from the distribution of interest f(ε) one draws samples from

another distribution g(ε), and compute the mean by weighting each draw by
f(εj)
g(εj)

, so

one could approximate Eε[Λ(β02 + β12x+ ε)] with equation (7.16).

Eε[Λ(β02 + β12x+ ε)] ≈
1

m

m∑

j=1

f(εj)

g(εj)
Λ(β02 + β12x+ ε) (7.16)

In this chapter the distribution of interest is the distribution conditional on being

at risk, while the other distribution is the distribution not conditional on being at risk.

These distributions are independent of x, so the conditioning on x in equation (7.17)

is superfluous, but this will prove useful later on.

Eε[Λ(β02 + β12x+ ε)] ≈
1

m

m∑

j=1

f(εj|x, y ∈ {B,C})

f(εj|x)
Λ(β02 + β12x+ ε) (7.17)

Instead of using equation (7.17) directly, the integral is computed using equa-

tion (7.18). The aim of this appendix is to show that these two are equivalent.

Eε[Λ(β02 + β12x+ ε)] ≈

∑m

j=1

[
Pr(y ∈ {B,C}|x, εj)Λ(β02 + β12x+ ε)

]

∑m

j=1 Pr(y ∈ {B,C}|x, εj)
(7.18)

The denominator of equation (7.18) can be rewritten as in equation (7.19), which

leads to equation (7.20)

m∑

j=1

Pr(y ∈ {B,C}|x, εj) = m

∑m

j=1 Pr(y ∈ {B,C}|x, εj)

m

≈ mPr(y ∈ {B,C}|x) (7.19)



Unobserved heterogeneity 161

Eε[Λ(β02 + β12x+ ε)] ≈
1

m

m∑

j=1

Pr(y ∈ {B,C}|x, εj)

Pr(y ∈ {B,C}|x)
Λ(β02 + β12x+ ε) (7.20)

Comparing equations (7.17) and (7.20) indicates that the problem can be simplified

to showing that equation (7.21) is true.

f(εj|x, y ∈ {B,C})

f(εj |x)
=
Pr(y ∈ {B,C}|x, εj)

Pr(y ∈ {B,C}|x)
(7.21)

Equation (7.21) can be rewritten as equation (7.22). Using Bayes’ theorem, equa-

tion (7.22) can be rewritten as equation (7.23). Equation (7.23) is true, thus showing

that equations (7.17) and (7.18) are equivalent. Notice, however, that this is based on

the approximation in equation (7.19), which will get better as the number of samples

m increases.

f(εj |x, y ∈ {B,C})Pr(y ∈ {B,C}|x) = Pr(y ∈ {B,C}|x, εj)f(εj|x) (7.22)

f(εj ∩ y ∈ {B,C}|x) = f(y ∈ {B,C} ∩ εj |x) (7.23)
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