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Technical materials I

sheafcoef and propcnsreg:

Stata modules for fitting a measurement model

with causal indicators

Both chapters 3 and 5 used the propcnsreg package, but for subtly different pur-

poses. In chapter 3 information from several educational category dummy variables

were combined into a single optimally-scaled education variable, while in chapter 5

tested whether the relative sizes of the effect of several parental background variables

have remained constant over time. The aim of this appendix is to describe both this

package and a related package: sheafcoef (Buis, 2009b). Both propcnsreg and

sheafcoef have been implemented in Stata (StataCorp, 2007).

The models implemented in both packages can be derived from the assumption

that the observed variables influence the latent variable. A common alternative as-

sumption is that the latent variable influences the observed variables. For example,

factor analysis is based on this alternative assumption. To distinguish between these

two situations, some authors, following Bollen (1984) and Bollen and Lennox (1991),

call the observed variables “effect indicators” when they are influenced by the latent

variable, and they call the observed variables “causal indicators” when they influence

the latent variable. Distinguishing between these two is important as each requires

a very different strategy for recovering the latent variable and its effect. In a basic

(exploratory) factor analysis, which is a model for effect indicators, one assumes that

the only thing the indicators have in common is the latent variable, so any correlation

between these variables must be due to the latent variable, and it is this correlation

that is used to recover the latent variable. In propcnsreg and sheafcoef, which

estimate models for causal indicators, the latent variable is assumed to be a weighted

sum of the indicators (and optionally an error term), and the weights are estimated

such that they are optimal for predicting the dependent variable. Within the models

implemented in the propcnsreg package this turns out to be equivalent to a propor-

tionality constraint, that is, the constraint that the relative influence of each indicator

remains constant over a set of other variables, in case of Chapter 5, cohort and gender.

Models for dealing with causal indicators come in roughly three flavors: A model

with “sheaf coefficients” (Heise, 1972), a model with “parametricaly weighted covari-
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178 Technical materials I

ates” (Yamaguchi, 2002), and a Multiple Indicators and Multiple Causes (MIMIC)

model (Hauser and Goldberger, 1971). The latter two can be estimated using

propcnsreg, while the former can be estimated using sheafcoef.

I.1 Sheaf coefficient

The sheaf coefficient is the simplest model of the three. Assume we want to explain a

variable y using three observed variables x1, x2, and x3, and we think that x1 and x2

actually influence y through a latent variable η and x3 is a control variable. Because

η is a latent variable, we need to fix its origin and its unit. The origin can be fixed

by setting η to 0 when both x1 and x2 are 0, and the unit can be fixed by setting the

standard deviation of η equal to 1. The model starts with a multiple regression model,

where the βs are the regression coefficients and ε is a normally distributed error term,

with a mean of 0 and a standard deviation that is to be estimated:

y = β0 + β1x1 + β2x2 + β3x3 + ε (I.1)

We want to turn this into equations (I.2) and (I.3), where λ is the effect of the latent

variable and the γs are the effects of the observed variables on the latent variable:

y = β0 + λη + β3x3 + ε (I.2)

η = γ0 + γ1x1 + γ2x2 (I.3)

We can fix the origin of η by constraining γ0 to be 0. This way η will be 0 when

both x1 and x2 equal 0. This leaves γ1 and γ2. We want to choose values for these

parameters such that η optimally predicts y, and the standard deviation of η equals 1.

This means that γ1 and γ2 are going to be a transformation of β1 and β2. We can start

with an initial guess that γ1 equals β1 and γ2 equals β2, and call the resulting latent

variable η′. This will get us closer to where we want to be, as we now have values for

all parameters: γ0=0, γ
′

1
=β1, γ

′

2
=β2, and λ′=1. The value for λ′ is derived from the

fact that that is the only value where equations (I.2) and (I.3) lead to equation (I.1).

However, the standard deviation of η′ will generally not be equal to 1. The standard

deviation of η′ can be calculated as follows:

sd(η′) =
√

β2

1
var(x1) + β2

2
var(x2) + 2β1β2cov(x1, x2)

We can recover η by dividing η′ by its standard deviation, which means that the

true values of γ1 and γ2 are actually β1/sd(η
′) and β2/sd(η

′). If we divide η′ by
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its standard deviation, then we must multiply λ′ by that same number to ensure that

equations (I.2) and (I.3) continue to lead to equation (I.1). As a consequence λ will

equal sd(η′).

This illustrates how the following set of assumptions can be used to recover the

latent variable and its effect on the dependent variable:

• the latent variable is a weighted sum of the observed variables such that the

latent variable optimally predicts the dependent variable.

• a constraint that fixes the origin of the latent variable.

• a constraint that fixes the unit of the latent variable.

One possible application of the sheaf coefficient is the comparison of effect sizes

of different blocks of variables. For example, we may have a block of variables rep-

resenting the family situation of the respondent and another block of variables repre-

senting characteristics of the work situation and we ask ourselves whether the work

situation or the family situation is more important for determining a certain outcome

variable. In that case we would estimate a model with two latent variables, one for

the family situation and one for the work situation, and since both latent variables are

standardized their effects will be comparable.

This can be useful, but a sheaf coefficient merely reorders the information obtained

from a regular regression. As a consequence, it is simply a different way of looking

at the regression results, and it does not impose a testable constraint. Moreover, this

model does not allow for any errors in the measurement of η, as equation (I.3) does

not contain an error term.

I.2 Parametricaly weighted covariates

The model with parametricaly weighted covariates Yamaguchi (2002) builds on the

model with sheaf coefficients, but allows the effect of the latent variable to change

over one or more other variables. This means that equation (I.4), where the effect of η

changes over x3 will be estimated, instead of equation (I.2).

y = β0 + (λ0 + λ1x3)η + β3x3 + ε (I.4)

If η is replaced by equation (I.3), and the origin of η is fixed by constraining γ0 to

be zero, we get:
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y = β0 + (λ0 + λ1x3)(γ1x1 + γ2x2) + β3x3 + ε

= β0 + (λ0 + λ1x3)γ1x1 + (λ0 + λ1x3)γ2x2 + β3x3 + ε

This means the effect of x1 (through η) on y equals (λ0 + λ1x3)γ1, and that

the effect of x2 (through η) on y equals (λ0 + λ1x3)γ3. This implies the following

constraint: for every value of x3, the effect of x1 relative to x2 will always be (λ0 +

λ1x3)γ1/(λ0 + λ1x3)γ2 = γ1/γ2, which is a constant. In other words, the model

with parametricaly weighted covariates imposes a proportionality constraint.

This proportionality constraint can also be of substantive interest without referring

to a latent variable. Consider a model where one wants to explain the respondent’s

education (ed) with the eduction of the father (fed) and the mother (med), and that one

is interested in testing whether the relative contribution of the mother’s education has

increased over time. propcnsregwill estimate this model under the null hypothesis

that the relative contributions of fed and med have remained constant over time.

Notice that the effects of fed andmed are allowed to change over time, but the effects

of fed andmed are constrained to change by the same proportion over time. So if the

effect of fed drops by 10% over a decade, then so does the effect ofmed.

The default way in which propcnsregwill identify the unit of the latent variable

is by setting its standard deviation to 1. Alternatively, the unit can be identified in one

of the following two ways: the coefficient λ0 can be set to 1, which means that γ1 and

γ2 represent the indirect effects of x1 and x2 through the latent variable on y when x3

equals 0. This is the default parametrization, but can also be explicitly requested by

specifying the lcons option. Alternatively, either the coefficient γ1 or γ2 can be set

to 1, which means that the unit of the latent variable will equal the unit of x1 or x2

respectively. This can be done by specifying the unit(varname) option.

I.3 MIMIC

The MIMIC model builds on the model with parametricaly weighted covariates by

assuming that the latent variable is measured with error. This means that the following

model is estimated:

y = β0 + (λ0 + λ1x3)η + β3x3 + εy (I.5)

η = γ1x1 + γ2x2 + εη (I.6)

Where εy and εη are independent normally distributed error terms with means zero
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and standard deviations that need to be estimated. By replacing η in equation (I.5) by

equation (I.6) one can see that the error term of this model is:

εy + (λ0 + λ1x3)εη

This combined error term will also be normally distributed, as the sum of two

independent normally distributed variables is itself also normally distributed. The

mean of this combined error term will be zero and it will have the following standard

deviation:

√

var(εy) + (λ0 + λ1x3)2var(εη)

So the empirical information that is used to separate the standard deviation of εy
from the standard deviation of εη, is the changes in the residual variance over x3.

The data will thus contain rather indirect information that can be used for estimating

this model. However, if the model is correct, it will make it possible to control for

measurement error in the latent variable.

There is an important downside to this model, and that is that heteroscedasticity,

and in particular changes in the variance of εy over x3, could have a distorting influ-

ence on the parameter estimates of λ0 and λ1. Consider again the example of want-

ing to explain the respondent’s education through the education of the father and the

mother, but now assume that we are interested in how the effect of the latent parental

education variable changes over time. In this case we have good reason to suspect that

the variance of εy will also change over time: education consists of a discrete num-

ber of categories, and in early cohorts most of the respondents tend to cluster in the

lowest categories. Over time the average level of education tends to increase, which

in practice means that the respondents tend to cluster less in the lowest category, and

have more room to differ from one another. As a consequence the residual variance is

likely to have increased over cohorts. Normally this heteroscedasticity would not be

an issue of great concern, but in a MIMIC model this heteroscedasticity is incorrectly

interpreted as indicating that there is measurement error in the latent variable repre-

senting parental education. Moreover, this ‘information’ on the measurement error is

used to ‘refine’ the estimates of λ0 and λ1. So, this would be an example where the

MIMIC model would not be appropriate.

I.4 Maximization of the likelihood function

Adifficulty with both the model with parametricalyweighted covariates and theMIMIC

model is that the parameters are highly correlated, thus making it difficult for the stan-
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dard maximization algorithms to find the maximum of the likelihood function. To

overcome this issue, an EM algorithm is first used to find suitable starting values.

The EM algorithm breaks the correlation by first treating the weights for the observed

variables as fixed and estimating the effect of the latent variable, and then treating the

effect of the latent variable as fixed and estimating the weights. By default, this is

iterated 20 times or until convergence. These parameter estimates are then used as

starting values for the regular maximum likelihood algorithm.

I.5 Example

The sheafcoef programme uses the fact that a sheaf coefficient is simply a trans-

formation of regression coefficients, which allows it to be implemented as a post-

estimation programme. This means that onemust first estimate a regression model, us-

ing an estimation command like regress or logit, and then one can use

sheafcoef to redisplay the results as a model with sheaf coefficients. It is there-

fore possible to use sheafcoef for continuous, ordered, and binomial dependent

variables.

The use of this command can be illustrated using the nlsw88.dta dataset that

comes with Stata (StataCorp, 2007). The first step is to open that dataset using the

sysuse command, and prepare the variables.

. sysuse nlsw88, clear

(NLSW, 1988 extract)

.

. gen highschool = grade == 12 if grade < .

(2 missing values generated)

. gen somecollege = grade > 12 & grade < 16 if grade < .

(2 missing values generated)

. gen college = grade >= 16 if grade < .

(2 missing values generated)

.

. gen lnwage = ln(wage)

.

. gen ttl_exp2 = ttl_expˆ2

.

. gen white = race == 1 if race < .

. gen other = race == 3 if race < .

In this example we have a set of dummies representing an individuals education

(highschool, somecollege, and college, meaning that the reference category is those

that have not finished high school), and a set of dummies representing an individual’s

race (white, and other, with African Americans as reference category), and we wonder

which set of variables is more important for predicting an individuals wage while

controlling for total experience in the labor market (ttl exp and ttl exp2). So, first a
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regression of all these variables on log wage is estimated. After that, sheafcoef is

used, specifying in the latent() option the blocks of variables that belong to the

same latent variable. The blocks are separated using a semi-colon (;). Each block

of variables is preceded by its name followed by a colon (:). So in this example, the

block of education dummies is given the name educ and the block of race dummies

is given the name race. The parameters educ and race in the main equation

represent the effects of the two latent variables. The parameters in the on educ and

on race equations represent the effects of the dummies on the education and race

latent variable respectively. The results show that education is more important than

race for determining a person’s income.

. reg lnwage white other ttl_exp ttl_exp2 highschool somecollege college

Source | SS df MS Number of obs = 2244

-------------+------------------------------ F( 7, 2236) = 120.98

Model | 203.545105 7 29.0778722 Prob > F = 0.0000

Residual | 537.417694 2236 .240347806 R-squared = 0.2747

-------------+------------------------------ Adj R-squared = 0.2724

Total | 740.962799 2243 .330344538 Root MSE = .49025

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

white | .118158 .0241501 4.89 0.000 .0707991 .1655169

other | .1079395 .0987438 1.09 0.274 -.0856996 .3015786

ttl_exp | .0616495 .009803 6.29 0.000 .0424255 .0808734

ttl_exp2 | -.0008656 .000395 -2.19 0.029 -.0016403 -.0000909

highschool | .1087398 .0320975 3.39 0.001 .0457958 .1716838

somecollege | .3568001 .0365223 9.77 0.000 .2851789 .4284213

college | .5167365 .0360893 14.32 0.000 .4459644 .5875086

_cons | .9272152 .061262 15.14 0.000 .807079 1.047351

------------------------------------------------------------------------------

. sheafcoef, latent(educ: highschool somecollege college ; race: white other)

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

main |

educ | .1898757 .0107139 17.72 0.000 .1688769 .2108746

race | .0517396 .0105663 4.90 0.000 .03103 .0724491

ttl_exp | .0616495 .009803 6.29 0.000 .0424359 .080863

ttl_exp2 | -.0008656 .000395 -2.19 0.028 -.0016399 -.0000913

_cons | .9272152 .061262 15.14 0.000 .807144 1.047286

-------------+----------------------------------------------------------------

on_educ |

highschool | .5726894 .1645151 3.48 0.000 .2502457 .8951332

somecollege | 1.879124 .1570053 11.97 0.000 1.5714 2.186849

college | 2.721446 .1063338 25.59 0.000 2.513036 2.929857

-------------+----------------------------------------------------------------

on_race |

white | 2.283707 .0197364 115.71 0.000 2.245024 2.32239

other | 2.086208 1.859547 1.12 0.262 -1.558437 5.730853

------------------------------------------------------------------------------
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The propcnsreg programme can estimate both models with parametricaly

weighted covariates and MIMIC models. Unlike the models with sheaf coefficients,

these models need to be separately estimated, and can thus not be as flexibly imple-

mented as the post-estimation command sheafcoef. In particular, propcnsreg

can only be used for continuous dependent variables with (approximately) normally

distributed errors.

The use of propcnsreg can be illustrated by continuing the example. Now we

assume that the effect of education changes for different levels of experience. The pa-

rameters in the ‘constrained’ panel represent the scale of education, such that parame-

ters of high school and some college represent the positions of these levels relative to

less than high school (0) and college (1). These are the effects of the education dum-

mies on the latent variable. The parameters in the panel ‘lambda’ represent how the

effect of the latent optimally-scaled education changes when experience changes. The

unconstrained panel shows the main effects of experience and the control variables. A

test of the proportionality constraint is reported at the bottom of the output.

. propcnsreg lnwage white other ttl_exp ttl_exp2, /*
> */ lambda(ttl_exp ttl_exp2) /*
> */ constrained(highschool somecollege college) /*
> */ unit(college) nolog

Number of obs = 2244

LR chi2(10) = 101.57

Log likelihood = -1573.1308 Prob > chi2 = 0.0000

Constraint: [constrained]college = 1

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

unconstrai˜d |

white | .1166583 .0240475 4.85 0.000 .0695259 .1637906

other | .1101377 .0981958 1.12 0.262 -.0823226 .3025981

ttl_exp | .0211701 .015895 1.33 0.183 -.0099836 .0523237

ttl_exp2 | .0006399 .0006602 0.97 0.332 -.0006541 .0019339

_cons | 1.150775 .0859399 13.39 0.000 .9823357 1.319214

-------------+----------------------------------------------------------------

constrained |

highschool | .2431708 .0550686 4.42 0.000 .1352384 .3511032

somecollege | .7056825 .0538163 13.11 0.000 .6002046 .8111605

college | 1 . . . . .

-------------+----------------------------------------------------------------

lambda |

ttl_exp | .1079688 .0299633 3.60 0.000 .0492419 .1666957

ttl_exp2 | -.0039162 .0012162 -3.22 0.001 -.0062999 -.0015325

_cons | -.1390864 .1748364 -0.80 0.426 -.4817595 .2035867

-------------+----------------------------------------------------------------

ln_sigma |

_cons | -.7178998 .014927 -48.09 0.000 -.7471563 -.6886434

------------------------------------------------------------------------------

LR test vs. unconstrained model: chi2(4) = 13.31 Prob > chi2 = 0.010



The sheafcoef and propcnsreg package 185

A MIMIC model can be estimated using propcnsreg by specifying the mimic

option. This means that an extra parameter (ln sigma latent) is estimated repre-

senting the log of the standard deviation of the measurement error of the latent vari-

able. In this case this does not lead to major changes in the results.

. propcnsreg lnwage white other ttl_exp ttl_exp2, /*
> */ lambda(ttl_exp ttl_exp2) /*
> */ constrained(highschool somecollege college) /*
> */ unit(college) mimic nolog

Number of obs = 2244

LR chi2(10) = 135.26

Log likelihood = -1571.1459 Prob > chi2 = 0.0000

Constraint: [constrained]college = 1

------------------------------------------------------------------------------

lnwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

unconstrai˜d |

white | .1187835 .0240303 4.94 0.000 .0716851 .1658819

other | .1017959 .0970624 1.05 0.294 -.0884429 .2920346

ttl_exp | .016967 .0151072 1.12 0.261 -.0126427 .0465766

ttl_exp2 | .0009142 .0006198 1.48 0.140 -.0003006 .0021291

_cons | 1.160823 .0805208 14.42 0.000 1.003005 1.318641

-------------+----------------------------------------------------------------

constrained |

highschool | .2304431 .0556791 4.14 0.000 .1213141 .3395721

somecollege | .7022772 .0550723 12.75 0.000 .5943375 .8102169

college | 1 . . . . .

-------------+----------------------------------------------------------------

lambda |

ttl_exp | .1182191 .0291939 4.05 0.000 .0610002 .1754381

ttl_exp2 | -.00456 .0011831 -3.85 0.000 -.0068787 -.0022412

_cons | -.160952 .168419 -0.96 0.339 -.4910472 .1691433

-------------+----------------------------------------------------------------

ln_sigma |

_cons | -.8121788 .0501504 -16.19 0.000 -.9104719 -.7138858

-------------+----------------------------------------------------------------

ln_sigma_l˜t |

_cons | -.9502158 .2506895 -3.79 0.000 -1.441558 -.4588735

------------------------------------------------------------------------------

This example illustrates how to estimate models with the three types of causal

indicators using the sheafcoef and propcnsreg modules in Stata. A complete

description of the syntax of sheafcoef and seqlogit is given below.



186 Technical materials I

I.6 Syntax and options

Syntax of sheafcoef

sheafcoef, latent(varlist 1 [ ; varlist 2 [; varlist 3 [...]]] )
[

eform post iterate(#) level(#)
]

Options of sheafcoef

latent(varlist 1 [;varlist 2 [; varlist 3 [...]]]) specifies the blocks of

variables that make up the latent variables, whereby each block is separated by

a semicolon (;). Each block needs to consist of at least two variables. These

variables must be explanatory variables in the estimation command preceding

sheafcoef, and the same variable can only appear in one block.

eform specifies that the effects of the latent variable and the control variables are

exponentiated. The effects of the indicator variables in each block on its latent

variable are not exponentiated, because these represent the effects of these vari-

ables on the standardized latent variable and not on the dependent variable. This

option can be useful after commands like logit or poisson, as this will cause

the effects on the dependent variables to be displayed in the form of odds ratios

and incidence rate ratios respectively.

post causes sheafcoef to behave like a Stata estimation (e-class) command. When

post is specified, sheafcoefwill post the vector of transformed estimators and

its estimated variance-covariance matrix to e(). This option, in essence, makes

the transformation permanent. Thus you could, after posting, treat the transformed

estimation results in the same way as you would treat results from other Stata es-

timation commands. For example, after posting, you could use test to perform

simultaneous tests of hypotheses on linear combinations of the transformed esti-

mators.

Specifying post clears the previous estimation results, which can then only be

recovered by refitting the original model or by storing the estimation results before

running sheafcoef and then restoring them; see [R] estimates store1.

level(#) specifies the confidence level, as a percentage, for confidence intervals.

The default is level(95) or as set by set level, see [R] level.

iterate(#) specifies the maximum number of iterations used to find the optimal

step size in calculating numerical derivatives of the transformations with respect

1I am following Stata’s convention when referencing to the manuals of Stata. These conventions are

discussed in the User’s Guide that comes with Stata, section 1.2.2: [U] 1.2.2 Cross-referencing.
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to the original parameters. By default, the maximum number of iterations is 100,

but convergence is usually achieved after only a few iterations. You should rarely

have to use this option.

Syntax of propcnsreg

propcnsreg depvar
[

indepvars
] [

if
] [

in
] [

weight
]

,

constrained(varlist) lambda(varlist)
[

standardized lcons

unit(varname) mimic robust cluster(varname) level(#)

em maximize options maximize options
]

Options of propcnsreg

constrained(varlist c) specifies the variables that are measurements of the same

latent variable. The effects of these variables are to be constrained to change by

the same proportion as the variables specified in lambda() change.

lambda(varlist l) specifies the variables along which the effects of the latent vari-

able changes.

standardized specifies that the unit of the latent variable is identified by con-

straining the standard deviation of the latent variable to be equal to 1. This is the

default parametrization.

lcons specifies that the parameters of the variables specified in the option

constrained() measure the indirect effect of these variables through the la-

tent variable on the dependent variable when all variables specified in the option

lambda() are zero.

unit(varname) specifies that the scale of the latent variable is identified by con-

straining the unit of the latent variable to be equal to the unit of varname. The

variable varname must be specified in constrained() option.

mimic specifies that a MIMIC model is to be estimated.

robust specifies that the Huber/White/sandwich estimator of variance is to be used

instead of the traditional calculation; see [U] 23.14 Obtaining robust variance es-

timates. robust combined with cluster() allows observations which are not

independent within cluster (although they must be independent between clusters).

cluster(clustervar) specifies that the observations are independent across groups

(clusters) but not necessarily within groups. clustervar specifies to which group

each observation belongs; e.g., cluster(personid) in data with repeated ob-

servations on individuals. See [U] 23.14 Obtaining robust variance estimates.

Specifying cluster() implies robust.
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level(#) specifies the confidence level, in percent, for the confidence intervals of

the coefficients; see [R] level.

em maximize options

emiterate(#) specifies the maximum number of iterations for the EM algorithm.

When the number of iterations equals emiterate(), the EM algorithm stops.

If convergence is declared before this threshold is reached, it will stop when con-

vergence is declared. The default value of emiterate() is 20.

emtolerance(#) specifies the tolerance for the coefficient vector. When the rel-

ative change in the coefficient vector from one iteration to the next is less than

or equal to emtolerance(), the emtolerance() convergence criterion is

satisfied. emtolerance(1e-6) is the default.

emltolerance(#) specifies the tolerance for the log likelihood. When the rel-

ative change in the log likelihood from one iteration to the next is less than or

equal to emltolerance(), the emltolerance() convergence is satisfied.

emltolerance(1e-7) is the default

These options are seldom used.

maximize options

difficult, technique(algorithm spec), iterate(#), trace, gradient,

showstep, hessian, shownrtolerance,tolerance(#),ltolerance(#),

gtolerance(#), nrtolerance(#), nonrtolerance(#); see

[R]maximize. These options are seldom used.


