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Abstract. This article discusses a method by Erikson et al. (2005) for decom-
posing a total effect in a logit model into direct and indirect effects. Moreover,
this article extends this method in three ways. First, in the original method the
variable through which the indirect effect occurs is assumed to be normally dis-
tributed. In this article the method is generalized by allowing this variable to have
any distribution. Second, the original method did not provide standard errors for
the estimates. In this article the bootstrap is proposed as a method of providing
those. Third, I show how to include control variables in this decomposition, which
was not allowed in the original method. The original method and these extensions
are implemented in the ldecomp package.
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The aim of this article is to study direct, indirect and total effects in a logit model,
and in particular a generalization of a method by Erikson et al. (2005) for computing
those when the variable whose effect we want to decompose is a categorical variable.
Direct, indirect and total effects are studied in order to reveal a mechanism through
which one variable affects another variable. The idea is illustrated using figure 1: There
is a variable X which has an effect on a variable Y, but part of this effect occurs
through another variable Z. This indirect effect occurs because X influences Z which in
turn influences Y. Within this framework, the effect of X on Y while controlling for Z
is called the direct effect. The indirect and direct effect together form the total effect
of X on Y. The indirect effect is the part of the effect of X on Y that can be explained,
while the direct effect is the residual or unexplained part of the effect. The aim of such
an analysis is to try to explain why a variable X influences a variable Y, by specifying
a mechanism: the effect occurs through the third variable Z. Z is called an intervening
variable. It differs from a confounding variable in the direction of the effect between X
and Z. If Z was a confounding variable then it would affect X rather than the other way
round.

X, Y, and Z could be many things. For example, within political science there
is literature starting with (Campbell et al. 1960) which explains the effect of party
identification (X) on voting for a party (Y) in part through how one perceives the
issues and the parties (Z). The idea is that someone’s party identification is a relatively
stable characteristic of a person, almost like a personality trait, which can color/distort
the perceptions of the issues and the positions of the candidates or parties1, which

1. A striking example of this is reported by Bartels (2002), who found that in a survey held in 1988
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Figure 1: Direct, indirect, and total effects

in turn influences voting behavior. This indirect effect thus represents a mechanism
through which party identification influences voting behavior, and we want to know
how important that mechanism is relative to the total effect of party identification.

Alternatively, within sociology there is a literature starting with (Boudon 1974)
that looks at the degree to which children from different social backgrounds (X) have
different probabilities of attending college (Y), and the part this effect that can be
ascribed to an indirect effect through academic performance in high school (Z): Children
from a higher class background do well at high school and those children that do well
at high school are more likely to attend college. Possible explanations for this could
be that higher class parents have better genes (nature) or are able to provide a more
intellectually stimulating environment for their children (nurture) or both. The aim is
again to estimate how important this mechanism is relative to the total effect of family
background.

More generally, the common practise of comparing regression coefficients before and
after controlling for a set of other covariates is implicitly an attempt at decomposing a
total effect into a direct and an indirect effect. Within linear regression ([R] regress)
this is an easy and convenient way of estimating the direct, indirect and total effect.
In this case the total effect of X is estimated using a regression which does not control
for Z. The direct effect of X is the effect of X in a regression with both X and Z as
explanatory variables, and the indirect effect is the difference between these two, since

more than 50% of the respondents who identified themselves as a ”strong Democrat” thought that
the inflation got worse or a lot worse during the Reagan presidency, while only 13% of the ”strong
Republicans” thought that this was the case. In actual fact the inflation rate in consumer prices fell
from 13.5% in 1980 to 4.1% in 1988.
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the total effect is the sum of the direct and indirect effect. However, this method will
not work when dealing with non-linear models like logistic regression ([R] logit). In
this article I will show why this is the case, and I will discuss a method for solving
this problem proposed by Erikson et al. (2005), I will propose a generalization of this
method, and introduce the ldecomp package that implements these methods in Stata.

1 The problem of indirect effects in a logit model

The key problem when estimating the direct, indirect, and total effects is that the
standard method of estimating them — comparing estimates from models that do and
do not control for Z — will not work in non-linear models like logistic regression. The
easiest way to see that is in an example where there is no indirect effect.

To illustrate the problem, I create artificial data where I know that there cannot
be an indirect effect of X through Z on Y, and show that the näıve method finds a
substantial indirect effect. The variables Z is created so that it can take three values (0,
1, and 2), and the variable X is created so that it can take two values (0 and 1). There
is no relationship between X and Z (a low X individual are as likely to be a high value
on Z as a high X individual). So in this example, there is no indirect effect of X on Y
through Z. We start by creating the variables X and Z.

. drop _all

. set obs 60000
obs was 0, now 60000

. gen z = ceil(_n / 20000) - 1

. bys z: gen x = ceil(_n / 10000) - 1

. tab x z

z
x 0 1 2 Total

0 10,000 10,000 10,000 30,000
1 10,000 10,000 10,000 30,000

Total 20,000 20,000 20,000 60,000

Next, we create the dependent variable Y according to the logistic regression equation
P (y=1)

1−P (y=1) = −4 + 4X + 2Z as discussed in (Buis 2007b)

. set seed 12345

. gen y = runiform() < invlogit(-4 + 4*x + 2*z)

Next we compute the näıve estimates of the indirect effect

(Continued on next page)
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. qui logit y x z

. est store direct

. local direct = _b[x]

.

. qui logit y x

. est store total

. local total _b[x]

.

. est tab direct total

Variable direct total

x 4.0391332 2.6256242
z 2.026339

_cons -4.0452305 -1.3123133

. di "naive indirect effect = " `total´ - `direct´
naive indirect effect = -1.413509

Someone who did not know that the data where created such that the indirect effect
is exactly zero, and used the näıve estimate of the indirect effect would conclude that the
indirect effect is about 54% of the total effect, and the fact that it has the opposite sign
from the total effect would suggest that this indirect effect has a noticeable dampening
influence on the effect of X on Y. This is not due to sampling variation, but due to a
structural bias in the näıve estimator.

The reason for this bias is that a logistic regression is comparison of proportions
that have first been transformed into log-odds ratios2. This is illustrated in Figure 2. It
consists of 4 vertical lines, on the two outer lines are plotted the probabilities of success
on Y, while the equivalent log odds are plotted on the two inner lines. The two left
lines represent the high X category, while the two right lines represent the low X group.
The open symbols and the solid arrows show how the probabilities are transformed
into log odds, and how, within each category of Z, the log odds of the high X group is
compared with the log odds of the low X group. This represents what happens when
we estimate a logit model with both X and Z as explanatory variables. When we
leave the variable Z out of the model — for example, because we want to estimate the
total effect — we are in effect first computing the average of the proportions and than
transform them into log odds. This is represent by the closed circles and the dashed
arrows. However, the more extreme values are less extreme in the probability metric
then in the log odds metric, that is, the probabilities close to either 0 or 1 are more
bunched together than their log odds counterparts. Therefore, computing the average
proportion before transforming the proportions into log odds means that the extreme
values are less influential than they would have been if the means were computed in

2. The odds and the log odds contain exactly the same information as the proportion, it is just
presented differently. The proportions times a hundred tells you how many people out of a hundred are
expected to attend college, while the odds tells you how many people are expected to attend college
for every person that does not attend college. The odds (O) can be derived from the proportion (p) in
the following way: O = p

1−p
.
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the log odds metric, so the average is being pulled towards the less extreme categories.
As a consequence the effect in terms of log odds will be less when Z is left out of the
model, even if there is no indirect effect. This problem is very similar to the problems
discussed in (Bartus 2005) and (Buis 2007a).
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Figure 2: The effect of X with and without controlling for Z

2 A solution

2.1 Outline

In order for there to be an indirect effect of X on Y through Z, X needs to have an effect
on Z, and Z has to have an effect on Y. For example, children from higher classes (X)
are likely to do better at high school (Z) then children from lower classes, and those who
have done better in high school (Z) are more likely to enter college (Y). In Figure 2 there
was no indirect effect because the distribution of Z was the same for both categories
of X. In figure 3 this is changed to include an indirect effect. The distribution of Z is
represented by the size of the symbols. So, in this new example there are within the
high X group more high Z individuals than medium Z individuals, and more medium Z
individuals than low Z individuals. The distribution of Z for the low X group is exactly
the opposite. Now there are two reasons why high X individuals are more likely to
belong to the high Y group: 1) they are more likely to belong to the high Z group and
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those who belong to the high Z group are more likely to belong to the high Y group.
This is the indirect effect of X through Z on Y. Figure 3 shows this in the following
way: For the high X group the high Z group is more influential when computing the
average probability because they are more numerous, while for the low X group the low
Z group are more influential, and this leads to a larger difference between the high and
low status group. 2) they are more likely to belong to the high Y group even when
compared with a low X group that has the same value on Z. Figure 3 shows this in the
following way: For each level of Z the high X group has a higher proportion belonging
to the high Y group than the low X group. This is the direct effect.
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Figure 3: Indirect and direct effects

Erikson et al. (2005) propose two related methods for estimating a direct, indirect,
and total effect such that the direct and indirect effects add up to the total effect. The
first method, is illustrated in figure 4, and consists of the following steps:

1. Estimate a logistic regression using both X and Z, and optionally the interactions
between X and Z.

2. Predict for each individual the log odds of success on Y (this is the linear predic-
tor), and transform these to probabilities.

3. Compute within each group of X the average predicted probability and transform
these to log odds. The difference in these log odds between the groups of X
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represents the total effect.

4. Assume that the low X individuals are actually high X individuals, predict for
each low X individual the log odds in this counterfactual scenario, and transform
these to probabilities.

5. Compute the average of these probabilities. This is the counterfactual probability
of success on Y for high X individuals if they had the distribution of Z of the low
X individuals. These are than transformed into log odds.

6. The high X individuals and this counterfactual group differ with respect to the
distribution of Z, but the probabilities conditional on X and Z are kept constant.
Therefore, comparing these groups gives the effect of X due to the differences in
the distribution of Z, that is, the indirect effect.

7. The low X individuals and the counterfactual group differ with respect to the
probabilities conditional on X and Z, but the distribution of Z is kept constant.
Therefore, comparing these groups gives the effect of X while controlling for the
distribution of Z, that is, the direct effect.

total
effect

indirect
effect

effect
direct
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Figure 4: Method 1

Figure 4 and equation 1 both show that this way the total effect is always the sum
of the direct and indirect effect. In equation 1 the O is the odds of success on Y, the
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first subscript represents the logistic regression coefficients, and the second subscript
represents the distribution of Z3. So Ox=1,z|x=1 is the odds of success for the high X
group, while Ox=1,z|x=0 is the counterfactual odds of success for the high X group if it
had the distribution of Z of the low X group.

ln(Ox=1,z|x=1) − ln(Ox=0,z|x=0)
︸ ︷︷ ︸

total

= ln(Ox=0,z|x=1) − ln(Ox=0,z|x=0)
︸ ︷︷ ︸

indirect

+

ln(Ox=1,z|x=1) − ln(Ox=0,z|x=1)
︸ ︷︷ ︸

direct

(1)

Using the rule that ln(a) − ln(b) = ln(a/b) it can be shown that these effects are
actually log odds ratios:

ln

(
Ox=1,z|x=1

Ox=0,z|x=0

)

︸ ︷︷ ︸

total

= ln

(
Ox=0,z|x=1

Ox=0,z|x=0

)

︸ ︷︷ ︸

indirect

+ ln

(
Ox=1,z|x=1

Ox=0,z|x=1

)

︸ ︷︷ ︸

direct

(2)

This means that this decomposition can also be presented in terms of odds ratios,
by exponentiating both sides of equation 2. Because of the rule that exp(a + b) =
exp(a) × exp(b) the total effect is now the product of the direct and indirect effects:

Ox=1,z|x=1

Ox=0,z|x=0
︸ ︷︷ ︸

total

=
Ox=0,z|x=1

Ox=0,z|x=0
︸ ︷︷ ︸

indirect

×
Ox=1,z|x=1

Ox=0,z|x=1
︸ ︷︷ ︸

direct

(3)

The second method of decomposing the total effect into a direct and indirect effect
proposed by (Erikson et al. 2005) is exactly the same as the first method, except that it
uses the counterfactual probability of success on Y for the low X individuals assuming
that they have the distribution of Z of the high X individuals, as is illustrated in figure 5.
The logic behind these two methods is exactly the same, but they do not have to result
in exactly the same estimates for the direct and indirect effects, though they are often
very close. Jackson et al. (2007) propose to solve this problem by computing the size of
the indirect effect relative to the total effect using both methods and report the average
of the two.

Another difficulty with this method is that the variable whose effect we want to
decompose (X) must be categorical, and that the number of effects that must be de-
composed increases very quickly with the number of categories in X. The reason is that
the decomposition will be different for all pairwise comparisons of categories. Normally

3. In fact, as can be seen in the description of this technique, these are averaged estimated log odds,
so some people would prefer to incorporate that in the notation by adding hats and bars. However,
I think that this notation is complicated enough as is and it is not crucial for the points that these
equations make, so I chose not to include those.
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Figure 5: Method 2

a categorical explanatory variable consisting of C categories can be entered as C − 1
dummies, each dummy representing a comparison between the reference category and
one of the other categories, leading to C − 1 effects. All other pairwise comparisons
can be directly derived from those effects. Consider, a logit model with a categorical
variable with three categories, low (x = 0), middle (x = 1), and high (x = 2), and
the category low was chosen to be the reference category. This will result in two odds
ratios: the odds ratio comparing the the medium and the low group and the odds ratio
comparing the high and the low group: Ox=1/Ox=0 and Ox=2/Ox=0. This excludes the
third possible comparison: the medium versus the high group. This comparison can be
derived directly from the other two odds ratios by dividing the two odds ratios:

Ox=1/Ox=0

Ox=2/Ox=0
=

Ox=1

Ox=0
×

Ox=0

Ox=2
=

Ox=1

Ox=2
(4)

This same reasoning will however not work for the decomposition. Consider the three
indirect effects using the first method, Ox=0,z|x=1/Ox=0,z|x=0, Ox=0,z|x=2/Ox=0,z|x=0,
and Ox=1,z|x=2/Ox=1,z|x=1:

Ox=0,z|x=2/Ox=0,z|x=0

Ox=0,z|x=1/Ox=0,z|x=0
6=

Ox=1,z|x=2

Ox=1,z|x=1
(5)
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So with this decomposition we cannot get away with only presenting all comparisons
with a single reference category (leading to C − 1 effects), but we will have to display
the decomposition for all pairwise comparisons (leading to

(
C

2

)
effects).

2.2 Generalization

In the original formulation of this method, the variable through which the indirect ef-
fect occurs (Z) has to be normally distributed. This is because the way Erikson et al.
(2005) propose to compute the average predicted probabilities. As discussed in steps
3 and 5, these averaged predicted probabilities play a key role in this decomposition.
Erikson et al. (2005) compute these averages by assuming that Z follows a normal dis-
tribution, and integrate over this distribution. This method is generalized in this article
in order to allow Z to follow any distribution by computing the average predicted prob-
ability by using the arithmetic mean of the predicted and counterfactual probabilities,
this way integrating over the empirical distribution of Z instead of over a normal dis-
tribution. As an added bonus this method is also easier to compute as the integration
over the normal distribution has to be done numerically, because there is no closed
form solution for this integral. For these reasons the generalized method is the default
method in the ldecomp package, which implements both decompositions in Stata.

2.3 Standard errors

In order to get an idea about the degree of uncertainty around these estimates one
would usually also estimate standard errors. These are not provided by Erikson et al.
(2005) and Jackson et al. (2007), but can be easily computed using the bootstrap
(Efron and Tibshirani 1993). The bootstrap uses the idea that the standard error is
the result of the following thought experiment: Assume we could draw many samples
from the population and compute a statistic in each of these samples. As these samples
will slightly differ from one another, so will the estimates of the statistic. The standard
error is the standard deviation of these different estimates and indicates how much vari-
ation one can expect due to the fact that the estimate is based on a random sample.
Drawing many random samples from the population is not practical, but we do have a
good estimate of the population, the sample, and we can without any difficulty draw
(with replacement) many samples from this ‘estimate of the population’. So, when using
the bootstrap many samples are drawn with replacement from the observed sample, the
statistic is computed within each sample, and the estimate of the standard error is the
standard deviation of these statistics. Within Stata this process has been automated
with the bootstrap command, see: [R] bootstrap.

2.4 Control variables

Control variables can be included in this method by including these by estimating the
logit model from step 1 including these control variables, but afterwards, at steps 2 and
4, fix their value at one specific value, for example their mean.
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3 Implementation in Stata

Both the original method proposed by Erikson et al. (2005), and the generalization pro-
posed in this paper have been implemented in Stata as the ldecomp package. Further-
more, ldecomp by default uses the bootstrap to compute standard errors and confidence
intervals.

3.1 Syntax

ldecomp depvar [control var1] [...]
[
if

] [
in

] [
weight

]
, direct(varname)

indirect(varlist)
[

at(control var1 #[; control var2 #] [...]) obspr

predpr predodds or rindirect normal range(##) nip(#) interactions

nolegend nodecomp nobootstrap bootstrap options
]

fweights, pweights, and iweights are allowed when the nobootstrap option is spec-
ified.

3.2 Options

direct(varname) specifies the variable whose effect we want to decompose into a direct,
indirect and total effect. This has to be a categorical variable, each value of varname

is assumed to represent a group.

indirect(varlist) specifies the variable(s) through which the indirect effect occurs. By
default, multiple variables are allowed and these can follow any distribution. If the
normal option is specified only one variable can be entered, and this variable is
assumed to be normally distributed.

at(control var1 #[; control var2 #] [...]) specifies the values at which the control
variables are to be fixed. The default is to fix the control variables at their mean
value.

rindirect specifies that the size of the indirect effects relative to the total effect are to
be displayed.

or specifies that the decomposition is to be displayed in terms of odds-ratios instead of
log odds-ratios.

obspr specifies that a table of the observed proportions is to be displayed.

predpr specifies that a table of predicted and counterfactual proportions is to be dis-
played. If the normal option is not specified and there are no control variables
then the diagonal elements of this table will be exactly the same as the observed
proportions.

predodds specifies that a table of predicted and counterfactual odds is to be displayed.
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normal specifies that the predicted and counterfactual proportions are to be computed
according to the method specified by Erikson et al. (2005). This means that the
variable in indirect() is assumed to be normally distributed. By default ldecomp
uses the more flexible method described in this article.

range(##) specifies the range over which the numerical integration of variable specified
in indirect() is to be performed. The default is the minimum of that variable minus
10% of the range of the variable and the maximum of the variable plus 10% of the
range of the variable. This option can only be specified with the normal option.

nip(#) specifies the number of integration points used in the numerical integration of
the variable specified in indirect(). The default 1000. This option can only be
specified with the normal option.

interactions specifies that interactions between the categories of the variable specified
in direct() and the variable(s) specified in indirect() are to be included. In other
words the effects of the variables specified in indirect() on the dependent variable
are allowed to differ from one another for each category of the variable specified in
direct(). This option was primarily added for compatibility with Erikson et al.
(2005).

nolegend suppresses the legend that is by default displayed at the bottom of the main
table.

nodecomp prevents ldecomp from displaying the table of decompositions, which can be
useful in combination with the obspr, predpr, and/or predodds options.

nobootstrap prevents ldecomp from using bootstrap to calculate standard errors.

bootstrap options The following options of bootstrap are allowed: reps, strata, size,
cluster, idcluster, saving, bca, mse, nodots, seed, and jackknifeopts. See:
[R] bootstrap.

3.3 Example

The use of ldecomp is illustrated using data from the Wisconsin Longitudinal Study
(Hauser and Sewell 1957–1977), which contains data on a random sample of 10,317 men
and women who graduated from Wisconsin high schools in 1957. In this example we
want to study the part of the effect of social class on the probability of entering college
that can be explained by performance during high school. The dependent variable is
whether a respondent ever attended college (college). Class is measured by the type
of occupation of the father (ocf57). The original data contained five classes, which
would lead to

(
5
2

)
= 10 effects that are to be decomposed. To keep the number of effects

manageable, the number of classes has been reduced to three: a lower class (unskilled
workers and farmers), a middle class (skilled workers), and a higher class (white collar
workers, professionals, and executives). The performance during high school is measured
with the percentile rank of high school grades (hsrankq). This means that computing
the counterfactual proportions using the method proposed by Erikson et al. (2005) will
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be problematic, as percentile rank scores will follow a uniform distribution instead of
a normal distribution. However, the default method can be used without problem as
it does not make any assumption about the distribution of performance. Relevant
descriptive statistics are shown below:

. use wisconsin.dta, clear
(Wisconsin Longitudinal Study)

. recode ocf57 2=1 3=2 4=3 5=3
(ocf57: 6196 changes made)

. label define ocf57 1 "lower" 2 "middle" 3 "higher", modify

. label value ocf57 ocf57

.

. table ocf57 if !missing(hsrankq, college) , ///
> contents(mean college mean hsrankq freq) ///
> format(%9.3g) stubwidth(15)

occupation of r
father in 1957 mean(college) mean(hsrankq) Freq.

lower .284 48.2 5218
middle .38 50.6 868
higher .619 56.2 2837

There are big differences between the classes in the proportion of respondents that
attend college. Moreover, those classes with low proportion attending college also tend
to have done worse during high school. So, part of the differences in proportions at-
tending college could be due to differences in performance. ldecomp is used to estimate
these direct, indirect, and total effects. In the example below, the effects are presented
as odds ratios, so the total effect is the product of the indirect and direct effect. Consider
the decomposition according to the first method of the difference between high class (3)
and low class (1) students, that is, the first three coefficients of the panel labeled ”3/1”.
Overall the odds of attending college for high class students is 4.10 times as large as
that odds for low class students (the total effect). Low class students would have a 1.23
times higher odds of attending college if they had the same performance as high class
students (indirect effect according to method 1), while the high class students would
have a 3.34 times higher odds of attending college than low class students when we keep
the performance constant at the level of high class students (direct effect according to
method 1).

(Continued on next page)
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. ldecomp college , direct(ocf57) indirect(hsrankq) or
(running _ldecomp on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 8923
Replications = 50

Observed Bootstrap Normal-based
Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

2/1
total 1.547746 .1087768 6.22 0.000 1.34858 1.776327

indirect1 1.061166 .0297615 2.12 0.034 1.004408 1.12113
direct1 1.458534 .0889065 6.19 0.000 1.294287 1.643624

indirect2 1.060416 .0292343 2.13 0.033 1.004638 1.11929
direct2 1.459565 .0889226 6.21 0.000 1.295284 1.644683

3/1
total 4.098896 .1563335 36.99 0.000 3.80366 4.417047

indirect1 1.228616 .0205526 12.31 0.000 1.188987 1.269566
direct1 3.33619 .1231675 32.63 0.000 3.103313 3.586542

indirect2 1.22293 .0212813 11.56 0.000 1.181922 1.26536
direct2 3.351702 .1256571 32.26 0.000 3.114249 3.607259

3/2
total 2.6483 .1803249 14.30 0.000 2.317438 3.026399

indirect1 1.157325 .03452 4.90 0.000 1.091606 1.226999
direct1 2.288295 .1361168 13.92 0.000 2.036475 2.571253

indirect2 1.153977 .0331169 4.99 0.000 1.090861 1.220745
direct2 2.294933 .1384071 13.77 0.000 2.039079 2.582889

in equation i/j (comparing groups i and j)
let the fist subscript of Odds be the distribution of the the indirect variable
let the second subscript of Odds be the conditional probabilities
Method 1: Indirect effect = Odds_ij/Odds_jj

Direct effect = Odds_ii/Odds_ij
Method 2: Indirect effect = Odds_ii/Odds_ji

Direct effect = Odds_ji/Odds_jj

value labels
1 lower
2 middle
3 higher

To get an idea of the relative importance of the indirect effect compared to the total
effect, one can add the rindirect option, like in the example below. This means that
the size of the indirect effects relative to total effects are shown at the bottom of the
decomposition table. These are labeled #/#r. So if we again look at the comparison
between children from higher and lower class fathers (the rows labeled 3/1 and 3/1r)
we see that the according to method 1 the indirect effect is .206

1.41 × 100% = 14.6% of the
total effect. According to method 2 this is .201

1.41 × 100% = 14.3%. So, on average the
indirect effect is 14.5% of the total effect. In general this table shows that the size of the
indirect effect is about 14 percent of the total effects. Additionally, the example below
illustrates that by leaving out the or option ldecomp will show the direct, indirect, and
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total effects in terms of log odds ratios, which means that the total effect is now the
sum of the direct and indirect effects.

. ldecomp college , direct(ocf57) indirect(hsrankq) rind nolegend
(running _ldecomp on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 8923
Replications = 50

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

2/1
total .4367997 .0681297 6.41 0.000 .303268 .5703314

indirect1 .0593679 .0244276 2.43 0.015 .0114906 .1072451
direct1 .3774319 .0684413 5.51 0.000 .2432894 .5115743

indirect2 .0586611 .0240686 2.44 0.015 .0114875 .1058347
direct2 .3781386 .0684292 5.53 0.000 .2440198 .5122575

3/1
total 1.410718 .0421018 33.51 0.000 1.3282 1.493236

indirect1 .2058881 .014635 14.07 0.000 .177204 .2345723
direct1 1.204829 .0390007 30.89 0.000 1.12839 1.281269

indirect2 .2012494 .014978 13.44 0.000 .1718931 .2306057
direct2 1.209468 .0386461 31.30 0.000 1.133723 1.285213

3/2
total .9739179 .075011 12.98 0.000 .8268989 1.120937

indirect1 .1461109 .0234312 6.24 0.000 .1001865 .1920353
direct1 .8278069 .0759825 10.89 0.000 .678884 .9767298

indirect2 .1432144 .0237856 6.02 0.000 .0965955 .1898332
direct2 .8307035 .0760533 10.92 0.000 .6816418 .9797652

2/1r
method1 .1359155 .0574128 2.37 0.018 .0233885 .2484425
method2 .1342975 .0568445 2.36 0.018 .0228844 .2457105
average .1351065 .0571076 2.37 0.018 .0231776 .2470354

3/1r
method1 .1459457 .0096034 15.20 0.000 .1271234 .164768
method2 .1426575 .0097455 14.64 0.000 .1235567 .1617583
average .1443016 .0095878 15.05 0.000 .1255099 .1630933

3/2r
method1 .1500239 .0256887 5.84 0.000 .0996749 .2003729
method2 .1470497 .0258689 5.68 0.000 .0963475 .1977519
average .1485368 .0256919 5.78 0.000 .0981816 .198892

Notice that the size of the indirect effect relative to the total effect can be larger than
100%, negative, or both. This might puzzle people who think of these relative effects as
the proportion of the total effect that can be explained by the indirect effect. However,
there is no reason why the direct and indirect effect cannot have opposite signs, and in
those cases these ‘weird’ proportions can occur. Thinking of these numbers as the size
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of the indirect effect relative to the size of the total effect can help avoid confusion.

In addition to the decomposition itself, ldecomp can produce a number of tables
that together illustrate step by step how it builds this decomposition. The first of these
tables is the table of the predicted and counterfactual proportions shown below.

. ldecomp college , direct(ocf57) indirect(hsrankq) predpr nodecomp

predicted and counterfactual proportions

association
distribution lower middle higher

lower .284 .366 .571
middle .296 .38 .585
higher .327 .415 .619

The diagonal elements in this table represent the predicted proportions, both fac-
tual distribution of performance (the rows) and factual conditional probabilities (the
columns), while the off-diagonal elements represent the counterfactual proportions. For
example, 28.4% of the children from lower class fathers will attend college. If these
children had the same performance as the children of higher class fathers then 32.7% of
them would attend college. If they had the same conditional probabilities as the children
of higher class fathers 57.1% would attend college. This indicates that the direct effect
is stronger than the indirect effect. The next step in the computation is to transform
these proportions into odds, which is done in the next table.

. ldecomp college , direct(ocf57) indirect(hsrankq) predodds nodecomp

predicted and counterfactual odds

association
distribution lower middle higher

lower .396 .578 1.33
middle .421 .613 1.41
higher .487 .71 1.62

The proportions are transformed into odds by dividing the proportion by one minus
the proportion, so the odds of attending college for children from lower class fathers is

.284
1−.284 = .397. The difference between this number and the number in the table is due
to rounding. This odds is interpreted as for every child of a lower class father that does
not go to college there are only .397 children of lower class fathers that do go to college.

The results that were obtained at the beginning of this example can be computed
using the predicted and counterfactual odds from the previous table. For example, if we
return to the decomposition of the total effect of having a higher class father rather than
a father from the lower class using method 1, we can compute it by filling in equation 3
with the predicted and counterfactual odds from the previous table:
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1.62

.396
︸︷︷︸

total

=
.487

.396
︸︷︷︸

indirect

×
1.62

.487
︸︷︷︸

direct

4.09
︸︷︷︸

total

= 1.23
︸︷︷︸

indirect

× 3.33
︸︷︷︸

direct

This example also makes it possible to look if the näıve method is really that bad as
I claim, and if the generalization that I proposed in this article is really an improvement.
We know that hsrankq deviates considerable from a normal/Gaussian distribution4, so
if the generalized method is an improvement on the original method then in this example
it should yield noticeably different estimates. The estimates using the original method
by Erikson et al. (2005) are obtained by specifying the normal option in ldecomp. The
näıve estimate was computed as follows: first a logit model of college on ocf57 was
estimated. The effect of ocf57 is the näıve estimate of the total effect. Than a logit

model of college on ocf57 and hsrankq was estimated. The effect of ocf57 is the
näıve estimate of the direct effect. The näıve estimate of the indirect effect relative to
the total effect is (total effect - direct effect) / total effect. The results are shown in
Table 1. This table clearly illustrates the major under-estimation of the indirect effect
when the näıve method is used. Moreover, the method by Erikson et al. (2005) also
leads to a considerable underestimation of about a quarter of the effect obtained using
the generalized method. This underestimation is the result of the incorrect assumption
made by the method by Erikson et al. (2005) that hsrankq is normally distributed.
Since the generalized method makes no such assumption, it seems to be the safest
method of the three for computing the decomposition of total effects into direct and
indirect effects after a logistic regression model.

Table 1: Comparing different estimates of the size of the (average) indirect effect relative
to the size of the total effect

generalization (Erikson et al. 2005) näıve
middle v. low 0.135 0.110 0.009
high v. low 0.144 0.105 0.014
high v. middle 0.149 0.102 0.017

4 Summary and discussion

This article started by showing why getting estimates of the direct and indirect effects
in a logistic regression is hard and presented a method by Erikson et al. (2005) to
estimate these effects, and proposes a generalization of this method. The idea is that
a categorical variable X can have a direct effect on a variable Y, and an indirect effect
through Z. One can find the direct effect of X by comparing the log odds of successes in

4. As noted before, it is a percentile rank score, so it follows a uniform distribution
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one category of X with the counterfactual log odds of successes of another category of
X given that they have the distribution of Z of the first category. This way the factual
and counterfactual group only differ with respect to X and not with respect to the
distribution of Z, thus controlling for the distribution of Z. Similarly, the indirect effect
can be found by comparing the log odds of success within one category of X with the
counterfactual log odds of success within that same category of X with a distribution
of Z of another category of X. This way the factual and counterfactual groups differ
only with respect to the distribution of Z. In its original form this method assumed that
the variable through which the indirect effect occurs has a normal distribution. In this
article this method was generalized by allowing the variable to have any distribution.
Moreover, the use of the bootstrap is proposed in order to estimate standard errors and
I added the possibility to include control variables.

This is a relatively new methodology, and like any new methodology there are still
some loose ends to tie up. First, the fact that there are two different estimates of the
direct and two different estimates of the indirect effects is less than elegant. Second, the
fact that a separate decomposition needs to be estimated for all pairwise comparisons
class instead of all comparisons with a single reference category can quickly lead to a
very large number of estimates. Third, this method is not the only way of attaining
estimates of direct and indirect effects. There are for instance the methods proposed by
Gomulka and Stern (1990), Even and Macpherson (1990), Fairlie (2005), Yun (2004),
and Bauer and Sinning (2008). Two of these have been implemented in Stata: The
method by Fairlie (2005) in the fairlie package (Jann 2006), and the method by
Bauer and Sinning (2008) in the nldecompose package (Sinning et al. 2008). How these
alternatives compare to the method discussed in this article needs to be explored.
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where he studies the interaction between demographic processes and inequality of educational

opportunity. He is also a frequent contributor to statalist.


	Direct and indirect effects in a logit modelto.44em.M. L. Buis

