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Abstract. One way in which one can better measure a variable, is to measure it
more than once. However, after the different measures have been collected, one
needs models that can combine the information from these different measurements.
In this article I will introduce three such models: Sheaf coefficients, models with
parametrically weighted covariates, and MIMIC models. What these models have
in common is that they are models for so called ‘causal indicators’, that is, the
observed variables are assumed to influence the underlying latent variable. Typical
situations where these models can be useful occur when the observed variables can
be thought of as resources adding up to a more general resource. For example,
occupation and education of respondents adding up to socioeconomic status, or the
amount of exercise and proportion of fruit in a diet adding up to the healthyness of
the lifestyle. These models can also be used to scale the categories of a categorical
explanatory variable such that the effect of that variable can be summarized by
one number.
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Sometimes we are in the fortunate position to have more than one measurement of
the same concept. This is a good thing, as any measurement will contain error and
measuring the same thing multiple times is a way of reducing this error. However, it
also requires a model that can incorporate the additional information from the multiple
measurements. There are roughly speaking two families of such models: First, there is
set of models that can be derived from the assumption that the observed variables influ-
ence the latent variable. For example, we might observe a respondent’s education and
occupation and think that these influence that person’s socioeconomic status (the latent
variable). Second, there is a set of models that can be derived from the assumption that
the latent variable influences the observed variables. For example, an intelligence test
consisting of multiple questions is often based on the idea that the respondents latent
intelligence influences that person’s probability of answering the questions correctly. To
distinguish between these two types of models, some authors, following Bollen (1984)
and Bollen and Lennox (1991), call the observed variables “effect indicators” when they
are influenced by the latent variable, and they call the observed variables “causal in-
dicators” when they influence the latent variable. Distinguishing between these two is
important as each requires a very different strategy for recovering the latent variable
and its effect. Models for effect indicators are basically variations on the following idea:
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2 Combining information from multiple variables

one assumes that the only thing the indicators have in common is the latent variable,
so any correlation between these variables must be due to the latent variable, and it is
this correlation that is used to recover the latent variable. Models for causal indicators
are based on the assumption that the latent variable is a weighted sum of the indicators
(and optionally an error term), and the weights are estimated such that they are optimal
for predicting the dependent variable. Models for effect indicators have already been
implemented in Stata in the factor command ([R] factor) or in the models discussed
by Hardouin (2007) and Kolenikov (2009), but models for causal indicators have been
largely missing in Stata. An exception is that some of these models can be estimated
using gllamm (Rabe-Hesketh et al. 2004; Skrondal and Rabe-Hesketh 2004)

In this article I will discuss three related models for causal indicators: a model
with ‘sheaf coefficients’ (Heise 1972), a model with ‘parametrically weighted covariates’
(Yamaguchi 2002), and a Multiple Indicators and Multiple Causes (MIMIC) model
(Hauser and Goldberger 1971). I will also discuss two programs — sheafcoef and
propcnsreg — that can be used to estimate these models. First the idea behind the
models will be discussed, followed by examples of how to estimate these in Stata, and a
discussion of the syntax of the sheafcoef and propcnsreg packages. This article will
end with a summary.

1 Sheaf coefficient

The sheaf coefficient is the simplest model of the three. Assume we want to explain a
variable y using three observed variables x1, x2, and x3, and we think that x1 and x2

actually influence y through a latent variable η and x3 is a control variable. Because
η is a latent variable, we need to fix its origin and its unit. The origin can be fixed
by setting η to 0 when both x1 and x2 are 0, and the unit can be fixed by setting the
standard deviation of η equal to 1. The model starts with a multiple regression model,
where the βs are the regression coefficients and ε is a normally distributed error term,
with a mean of 0 and a standard deviation that is to be estimated:

y = β0 + β1x1 + β2x2 + β3x3 + ε (1)

We want to turn this into equations 2 and 3, where λ is the effect of the latent
variable and the γs are the effects of the observed variables on the latent variable:

y = β0 + λη + β3x3 + ε (2)

η = γ0 + γ1x1 + γ2x2 (3)

We can fix the origin of η by constraining γ0 to be 0. This way η will be 0 when
both x1 and x2 equal 0. This leaves γ1 and γ2. We want to choose values for these
parameters such that η optimally predicts y, and the standard deviation of η equals 1.
This means that γ1 and γ2 are going to be a transformation of β1 and β2. We can start
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with an initial guess that γ1 equals β1 and γ2 equals β2, and call the resulting latent
variable η′. This will get us closer to where we want to be, as we now have values for
all parameters: γ0=0, γ′

1
=β1, γ′

2
=β2, and λ′=1. The value for λ′ is derived from the

fact that that is the only value where equations 2 and 3 lead to equation 1. However,
the standard deviation of η′ will generally not be equal to 1. The standard deviation of
η′ can be calculated as follows:

sd(η′) =
√

β2

1
var(x1) + β2

2
var(x2) + 2β1β2cov(x1, x2) (4)

We can recover η by dividing η′ by its standard deviation, which means that the true
values of γ1 and γ2 are actually β1/sd(η′) and β2/sd(η′). If we divide η′ by its standard
deviation, then we must multiply λ′ by that same number to ensure that equations 2
and 3 continue to lead to equation 1. As a consequence λ will equal sd(η′).

Notice that this implies that the effect of the latent variable η is always positive.
This is not restrictive as it seems, as what is high or low in η has not been fixed.
So, to give a substantive interpretation of the direction of the effect of η one needs to
look at the λs. For example, if x1 is the proportion of vegetables in a person’s diet,
x2 is the number of minutes spent a day exercising, and the λs are positive, then η
would represent the ‘healthyness’ of a person’s lifestyle. However, if the λs are negative,
η would represent the ‘unhealthyness’ of a person’s lifestyle. Alternatively, we could
relax the constraint that λ must be positive by picking one of the observed variables
and identify the direction of the latent variable relative to this observed variable by
constrain η to have a high value when that observed variable has a high value and low
when the observed variable has a low value (or exactly the opposite).

So, the key idea behind the sheaf coefficient (and all the models with causal indi-
cators) is that if we think that the observed variables influence the latent variables,
then that latent variable can be written as a weighted sum of the observed variables.
The empirical information we use to recover the latent variable is that we choose those
weights to maximize the effect of the latent variable on the dependent variable. Because
we are trying to recover a latent variable we need the following three constraints:

• a constraint that fixes the origin of the latent variable.

• a constraint that fixes the unit of the latent variable.

• a constraint that either fixes the direction of latent variable or the direction of its
effect.

One possible application of the sheaf coefficient is the comparison of effect sizes of
different blocks of variables. For example, we may have a block of variables representing
the family situation of the respondent and another block of variables representing char-
acteristics of the work situation and we ask ourselves whether the work situation or the
family situation is more important for determining a certain outcome variable. In that
case we would estimate a model with two latent variables, one for the family situation
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and one for the work situation, and since both latent variables are standardized their
effects will be comparable.

This can be useful, but a sheaf coefficient merely reorders the information obtained
from a regular regression. As a consequence, it is simply a different way of looking
at the regression results, and it does not impose a testable constraint. Moreover, this
model does not allow for any errors in the measurement of η, as equation 3 does not
contain an error term.

1.1 Implementation in Stata: the sheafcoef pacakage

Sheaf coefficients can be estimated using the sheafcoef package. This package uses
the fact that a sheaf coefficient is simply a transformation of coefficients, which allows
it to be implemented as a post-estimation programme. This means that one must first
estimate a model, using an estimation command like regress or logit, and then one
can use sheafcoef to redisplay the results as a model with sheaf coefficients. It is
therefore possible to use sheafcoef for many different kinds of dependent variables.

Example

The use of this command can be illustrated using the nlsw88.dta dataset that
comes with Stata. The first step is to open that dataset using the sysuse command,
and prepare the variables.

. sysuse nlsw88, clear
(NLSW, 1988 extract)

.

. gen highschool = grade == 12 if grade < .
(2 missing values generated)

. gen somecollege = grade > 12 & grade < 16 if grade < .
(2 missing values generated)

. gen college = grade >= 16 if grade < .
(2 missing values generated)

.

. gen lnwage = ln(wage)

.

. gen ttl_exp2 = ttl_exp^2

.

. gen white = race == 1 if race < .

. gen other = race == 3 if race < .

In this example we have a set of dummies representing an individual’s education
(highschool, somecollege, and college, meaning that the reference category is those
who have not finished high school), and a set of dummies representing an individual’s
race (white, and other, with African American as reference category), and we won-
der which set of variables is more important for predicting an individuals wage while
controlling for total experience in the labor market (ttl exp and ttl exp2). So, first
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a regression of all these variables on log wage is estimated. After that, sheafcoef is
used, specifying in the latent() option the blocks of variables that belong to the same
latent variable preceded by the name we want to give to each latent variable. The name
and the list of variables are separated using a colon (:), while the blocks of variables
are separated using a semi-colon (;). So in this example, the education dummies are
put in the first latent variable called education and the race dummies in the second
latent variable called race. Notice that college is preceded by a +, this means that
we identify the direction of the latent education variable relative to college such that
education has a high value when a person has a college degree. None of the race dum-
mies has a + or a - attached to it, so the direction of that latent variable is identified
such that it has a positive effect on lnwage.

. reg lnwage white other ttl_exp ttl_exp2 highschool somecollege college

(output omitted )

. sheafcoef, ///
> latent(education: highschool somecollege +college ; ///
> race: white other)

lnwage Coef. Std. Err. t P>|t| [95% Conf. Interval]

main
education .1898757 .0107139 17.72 0.000 .1688655 .2108859

race .0517396 .0105663 4.90 0.000 .0310188 .0724603
ttl_exp .0616495 .009803 6.29 0.000 .0424255 .0808734
ttl_exp2 -.0008656 .000395 -2.19 0.029 -.0016403 -.0000909

_cons .9272152 .061262 15.14 0.000 .807079 1.047351

on_education
highschool .5726894 .1645151 3.48 0.001 .2500711 .8953078
somecollege 1.879124 .1570053 11.97 0.000 1.571233 2.187016

college 2.721446 .1063338 25.59 0.000 2.512923 2.929969

on_race
white 2.283707 .0197364 115.71 0.000 2.245003 2.32241
other 2.086208 1.859547 1.12 0.262 -1.560411 5.732827

The parameters education and race in the main equation represent the effects of
these latent variables on wage. The results show that education is more important
than race for determining a person’s income. The parameters in the on education and
on race equations represent the effects of the dummies on the education latent variable
and race latent variable respectively. These can be interpreted as scaling the different
educational and race categories.

2 Parametricaly weighted covariates

The model with parametricaly weighted covariates (Yamaguchi 2002) builds on the
model with sheaf coefficients, but allows the effect of the latent variable to change over
one or more other variables. This means that equations 5 and 6, where the effect of η
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changes over x3 will be estimated, instead of equations 2 and 3.

y = β0 + (λ0 + λ1x3)η + β3x3 + ε (5)

η = γ0 + γ1x1 + γ2x2 (6)

If η is replaced by equation 6, and the origin of η is fixed by constraining γ0 to be
zero, we get:

y = β0 + (λ0 + λ1x3)(γ1x1 + γ2x2) + β3x3 + ε

= β0 + (λ0 + λ1x3)γ1x1 + (λ0 + λ1x3)γ2x2 + β3x3 + ε

This means the effect of x1 (through η) on y equals (λ0+λ1x3)γ1, and that the effect
of x2 (through η) on y equals (λ0 + λ1x3)γ2. This implies the following constraint: for
every value of x3, the effect of x1 relative to x2 will always be (λ0 + λ1x3)γ1/(λ0 +
λ1x3)γ2 = γ1/γ2, which is a constant. In other words, the model with parametricaly
weighted covariates imposes a proportionality constraint. The empirical information
used to estimate this model is still that we choose the weights (γs) to maximize the effect
of the latent variable on the dependent variable, but now we add this proportionality
constraint.

There are now a variety of ways in which we could identify the unit of the latent
variable: We could use the same strategy as with sheaf coefficients, that is, identify
the unit of the latent variable by setting its standard deviation to 1 and identify the
direction either such that the effect of the latent variable is positive or relative to one
of the observed variables. Alternatively, the coefficient λ0 can be set to 1, which means
that γ1 and γ2 represent the indirect effects of x1 and x2 through the latent variable on
y when x3 equals 0, or either the coefficient γ1 or γ2 can be set to 1, which means that
the unit of the latent variable will equal the unit of x1 or x2 respectively.

The proportionality constraint can also be of substantive interest without referring
to a latent variable. Consider a model where one wants to explain the respondent’s
education with the eduction of the father (fed) and the mother (med), and that one
is interested in testing whether the relative contribution of the mother’s education has
increased over time. The model with parametrically weighted covariates will estimate
this model under the null hypothesis that effects of fed and med might have changed
over time, but that the size of the effect of med relative to the size of fed has remained
constant.

2.1 Implementation in Stata: the propcnsreg package

The propcnsreg package can estimate a model with parametricaly weighted covariates.
Unlike the models with sheaf coefficients, these models need to be separately estimated,
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and can thus not be implemented as a post-estimation command like sheafcoef. This
means that propcnsreg can only be used for continuous dependent variables with (ap-
proximately) normally distributed errors.

Example

The use of propcnsreg can be illustrated by continuing the example. Now we assume
that the effect of education changes for different levels of experience. The parameters
in the constrained panel represent the scale of the latent education variable. By
specifying the unit(college) option, we identified the unit of the latent education
variable such that parameters of highschool and somecollege represent the positions
of these levels relative to less than high school (0) and college (1). The parameters
in the panel lambda represent the effect of the latent optimally-scaled education on
lnwage and how it changes when experience changes. The unconstrained panel shows
the main effects of experience and the control variables. A test of the proportionality
constraint is reported at the bottom of the output.

. propcnsreg lnwage white other ttl_exp ttl_exp2, /*
> */ lambda(ttl_exp ttl_exp2) /*
> */ constrained(highschool somecollege college) /*
> */ unit(college) nolog

Number of obs = 2244
LR chi2(10) = 101.57

Log likelihood = -1573.1308 Prob > chi2 = 0.0000

Constraint: [constrained]college = 1

lnwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

unconstrai~d
white .1166583 .0240475 4.85 0.000 .0695259 .1637906
other .1101377 .0981958 1.12 0.262 -.0823226 .3025981

ttl_exp .0372122 .0041246 9.02 0.000 .0291281 .0452963
ttl_exp2 .0006399 .0006602 0.97 0.332 -.0006541 .0019339

_cons 1.516685 .0362236 41.87 0.000 1.445688 1.587682

constrained
highschool .2431709 .0550686 4.42 0.000 .1352385 .3511033
somecollege .7056825 .0538163 13.11 0.000 .6002045 .8111604

college 1 . . . . .

lambda
ttl_exp .0097898 .0072732 1.35 0.178 -.0044653 .024045
ttl_exp2 -.0039162 .0012162 -3.22 0.001 -.0062999 -.0015325

_cons .5989646 .0440969 13.58 0.000 .5125363 .6853928

ln_sigma
_cons -.7178998 .014927 -48.09 0.000 -.7471563 -.6886434

LR test vs. unconstrained model: chi2(4) = 13.31 Prob > chi2 = 0.010
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3 MIMIC

The MIMIC model builds on the model with parametricaly weighted covariates by
assuming that the latent variable is measured with error. This means that the model in
equations 7 and 8 is estimated. The only difference with the model with parametrically
weighted covariates is the addition of the error term εη in equation 8.

y = β0 + (λ0 + λ1x3)η + β3x3 + εy (7)

η = γ1x1 + γ2x2 + εη (8)

The εy and εη are independent normally distributed error terms with means zero
and standard deviations that need to be estimated. By replacing η in equation 7 by
equation 8, one can see that the error term of this model is:

εy + (λ0 + λ1x3)εη (9)

This combined error term will also be normally distributed, as the sum of two inde-
pendent normally distributed variables is itself also normally distributed. The mean of
this combined error term will be zero and it will have the following standard deviation:

√

var(εy) + (λ0 + λ1x3)2var(εη) (10)

So the empirical information that is used to separate the standard deviation of εy

from the standard deviation of εη, is the changes in the residual variance over x3. The
data will thus contain rather indirect information that can be used for estimating this
part of the model. However, if the model is correct, it will make it possible to control
for measurement error in the latent variable.

There is an important downside to this model, and that is that heteroscedasticity,
and in particular changes in the variance of εy over x3, could have a distorting influence
on the parameter estimates of λ0 and λ1. Consider again the example of wanting to
explain the respondent’s education through the education of the father and the mother,
but now assume that we are interested in how the effect of the latent parental education
variable changes over time. In this case we have good reason to suspect that the variance
of εy will also change over time: education consists of a discrete number of categories,
and in early cohorts most of the respondents tend to cluster in the lowest categories.
Over time the average level of education tends to increase, which in practice means that
the respondents tend to cluster less in the lowest category, and have more room to differ
from one another. As a consequence the residual variance is likely to have increased
over cohorts. Normally this heteroscedasticity would not be an issue of great concern,
but in a MIMIC model this heteroscedasticity is incorrectly interpreted as indicating
that there is measurement error in the latent variable representing parental education.
Moreover, this ‘information’ on the measurement error is used to ‘refine’ the estimates
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of λ0 and λ1. So, this would be an example where the MIMIC model would not be
appropriate.

3.1 Implementation in Stata: the propcnsreg package with the mimic

option

A MIMIC model can be estimated using propcnsreg by specifying the mimic option.
This means that an extra parameter (ln sigma latent) is estimated representing the
log of the standard deviation of the measurement error of the latent variable.

Example

Continuing the example, we can estimate the following MIMIC model. Notice that
the test for the proportionality constraint is no longer reported, as it is unclear how to
identify the error variance of the latent variable without the proportionality constraint.

. propcnsreg lnwage white other ttl_exp ttl_exp2, /*
> */ lambda(ttl_exp ttl_exp2) /*
> */ constrained(highschool somecollege college) /*
> */ unit(college) mimic nolog

Number of obs = 2244
LR chi2(10) = 135.25

Log likelihood = -1571.1459 Prob > chi2 = 0.0000

Constraint: [constrained]college = 1

lnwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

unconstrai~d
white .1187835 .0240302 4.94 0.000 .071685 .1658819
other .101796 .0970624 1.05 0.294 -.0884427 .2920347

ttl_exp .039887 .0036913 10.81 0.000 .0326521 .0471218
ttl_exp2 .0009142 .0006198 1.48 0.140 -.0003006 .0021291

_cons 1.517155 .0366785 41.36 0.000 1.445266 1.589043

constrained
highschool .2304432 .0556791 4.14 0.000 .1213142 .3395722
somecollege .7022772 .0550723 12.75 0.000 .5943375 .8102169

college 1 . . . . .

lambda
ttl_exp .0039014 .0067611 0.58 0.564 -.0093502 .0171529
ttl_exp2 -.00456 .0011831 -3.85 0.000 -.0068787 -.0022412

_cons .6044364 .0446813 13.53 0.000 .5168626 .6920101

ln_sigma
_cons -.8121774 .050151 -16.19 0.000 -.9104716 -.7138833

ln_sigma_l~t
_cons -.9502239 .2506964 -3.79 0.000 -1.44158 -.458868
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4 Syntax and options

Syntax of sheafcoef

sheafcoef, latent(latent spec )
[

eform equation(##| name) post

level(#)
]

Options of sheafcoef

latent(latent spec) specifies the blocks of variables that make up the latent variables.
The syntax for latent spec is:

[name 1:][+|-]var 1 [+|-]var 2 ...
[

; [name 2:][+|-]var 3 [+|-]var 4 ...
] [

...
]

Each block is separated by a semicolon (;). Each block needs to consist of at least two
variables. These variables must be explanatory variables in the estimation command
preceding sheafcoef, and the same variable can only appear in one block. Each
block can be preceded by a name for the latent variable it represents. The name
and the variables are separated by a colon (:). Moreover, one can identify one key
variable in each block of variables by attaching a + or - (without a space) to a
variable in a block. If one of the observed variables has + attached to it, then the
latent variable will have a high value when that observed variable is high and a low
variable when that observed variable is low. The opposite is true when one of the
observed variables has a - attached to it. If no observed variable in a block has a
+ or a - attached to it, then the direction of that latent variable is identified such
that it’s effect on the dependent variable is positive.

equation(## | name) specifies the equation from the previous estimation command
to be used when computing the sheaf coefficients. This option is relevant when using
sheafcoef after commands like [R] mlogit or [R] heckman that return results in
multiple equations. One can either specify whether sheafcoef should consider the
first, second, etc. equation or one can type in the name of that equation. In the
former case the number of the equation should be preceded by a #.

eform specifies that the effects of the latent variable and the control variables are expo-
nentiated. The effects of the indicator variables in each block on its latent variable
are not exponentiated because these represent the effects of these variables on the
standardized latent variable and not on the dependent variable. This option can be
useful after commands like logit or poisson, as this will cause the effects on the
dependent variables to be displayed in the form of odds ratios and incidence rate
ratios respectively.

post causes sheafcoef to behave like a Stata estimation (e-class) command. When
post is specified, sheafcoef will post the vector of transformed estimators and its
estimated variance-covariance matrix to e(). This option, in essence, makes the
transformation permanent. Thus you could, after posting, treat the transformed
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estimation results in the same way as you would treat results from other Stata es-
timation commands. For example, after posting, you could use [R] test to perform
simultaneous tests of hypotheses on linear combinations of the transformed estima-
tors.

Specifying post clears the previous estimation results, which can then only be re-
covered by refitting the original model or by storing the estimation results before
running sheafcoef and then restoring them; see [R] estimates store.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level, see [R] level.

Syntax of propcnsreg

propcnsreg depvar
[

indepvars
] [

if
] [

in
] [

weight
]

, constrained(varlist)

lambda(varlist)
[

standardized lcons unit(varname) mimic robust

cluster(varname) level(#) em maximize options maximize options
]

Options of propcnsreg

constrained(varlist c) specifies the variables that are measurements of the latent vari-
able. The effects of these variables are to be constrained to change by the same
proportion as the variables specified in lambda() change. One can precede one of
these variables with either a + or a - to a variable (without a space) to indicate
that the direction of the latent variable is to be identified relative to this observed
variable if the standardized option is specified. If the observed variable is preceded
by a + then the latent variable has a high value when that observed variable has
a high value, and when the observed variable is preceded by a - then the latent
variable has a low value when that observed variable has a high value.

lambda(varlist l) specifies the variables along which the effects of the latent variable
changes.

standardized specifies that the unit of the latent variable is identified by constraining
the standard deviation of the latent variable to be equal to 1. This is the default
parametrization.

lcons specifies that the unit of the latent variable is identified by setting the constant
of the lambda equation equal to 1. This means that the parameters of the variables
specified in the option constrained() measure the indirect effect of these variables
through the latent variable on the dependent variable when all variables specified in
the option lambda() are zero.

unit(varname) specifies that the scale of the latent variable is identified by constraining
the unit of the latent variable to be equal to the unit of varname. The variable
varname must be specified in constrained() option.
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mimic specifies that a MIMIC model is to be estimated.

robust specifies that the Huber/White/sandwich estimator of variance is to be used
instead of the traditional calculation; see [U] 23.14 Obtaining robust variance

estimates. robust combined with cluster() allows observations which are not
independent within cluster (although they must be independent between clusters).

cluster(clustervar) specifies that the observations are independent across groups (clus-
ters) but not necessarily within groups. clustervar specifies to which group each
observation belongs; e.g., cluster(personid) in data with repeated observations on
individuals. See [U] 23.14 Obtaining robust variance estimates. Specifying
cluster() implies robust.

level(#) specifies the confidence level, in percent, for the confidence intervals of the
coefficients; see [R] level.

em maximize options

The starting values are determined by a number of iterations of an EM algorithm, and
the following options allows one to fine tune this algorithm. These options are seldom
used.

emiterate(#) specifies the maximum number of iterations for the EM algorithm.
When the number of iterations equals emiterate(), the EM algorithm stops. If
convergence is declared before this threshold is reached, it will stop when conver-
gence is declared. The default value of emiterate() is 20.

emtolerance(#) specifies the tolerance for the coefficient vector. When the rela-
tive change in the coefficient vector from one iteration to the next is less than
or equal to emtolerance(), the emtolerance() convergence criterion is satisfied.
emtolerance(1e-6) is the default.

emltolerance(#) specifies the tolerance for the log likelihood. When the relative
change in the log likelihood from one iteration to the next is less than or equal to
emltolerance(), the emltolerance() convergence is satisfied. emltolerance(1e-7)
is the default

maximize options

difficult, technique(algorithm spec), iterate(#), trace, gradient, showstep,
hessian, shownrtolerance, tolerance(#), ltolerance(#), gtolerance(#),
nrtolerance(#), nonrtolerance(#); see [R] maximize. These options are sel-
dom used.

5 Summary

In this article I discussed three models for combining information from multiple mea-
surements of the same variable: the model with sheaf coefficients, the model with para-
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metrically weighted covariates, and the MIMIC model. These are models for so called
‘causal indicators’, which means that the observed variables are thought to influence
the underlying latent variable. They are an alternative for models for so called ‘effect
indicators’ where the observed variables are though to be influenced by the underlying
latent variable, like factor analysis.

The models for causal indicators use the following strategy to recover the underlying
latent variable: the latent variable is thought of as a weighted sum of the observed
variables, where the weights are the effects of the observed variables on the latent
variable. The weights are chosen to maximize the effect of the latent variable on the
dependent variable, subject to at least the following identifying constraints:

• a constraint that fixes the origin,

• a constraint that fixes the unit, and

• a constraint that fixes the direction of either the latent variable or it’s effect.

The model using sheaf coefficients only uses this minimal set of identifying con-
straints. This means that a sheaf coefficient does not imply a testable constraint, it is
just a different way of representing the results from a regular model. The model with
parametrically weighted covariates allows the effect of the latent variable to change over
another variable. It uses the same strategy as models with sheaf coefficients to recover
the latent variable, but adds the testable constraint that the relative sizes of the ef-
fects of the observed indicators through the latent variable on the dependent variable
does not change over this other variable. The MIMIC model builds on the model with
parametrically weighted covariates but allows the latent variable to be measured with
error. It uses the same strategy as the model with parametrically weighted covariates
to recover the latent variable, but it adds the constraint that total residual variance
depends on the variables along which the latent variable is allowed to change.

I also discussed the way in which these models are implemented in Stata. The
model with sheaf coefficients is implemented as the sheafcoef package. The model
with parametrically weighted covariates and the MIMIC model are implemented in the
propcnsreg package.

6 Acknowledgement

I thank Richard T. Campbell for literature references and encouragements.

7 References

Bollen, K. A. 1984. Multiple indicators: Internal consistency or no necessary relation-
ship? Quality & Quantity 18(4): 399–385.

Bollen, K. A., and R. Lennox. 1991. Conventional wisdom on measurement: A structural
equation perspective. Psychological Bulletin 110(2): 305–314.



14 Combining information from multiple variables

Hardouin, J.-B. 2007. Rasch analysis: Estimation and tests with raschtest. The Stata

Journal 7: 22–44.

Hauser, R. M., and A. S. Goldberger. 1971. The treatment of unobservable variables in
path analysis. Sociological Methodology 3: 81–117.

Heise, D. R. 1972. Employing nominal variables, induced variables, and block variables
in path analysis. Sociological Methods & Research 1(2): 147–173.

Kolenikov, S. 2009. Confirmatory factor analysis using confa. The Stata Journal 9:
329–373.

Rabe-Hesketh, S., A. Skrondal, and A. Pickles. 2004. Generalized multilevel structural
equation modelling. Psychometrika 69: 167–190.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Mul-

tilevel, Longitudinal, and Structural Equation Models. Boca Raton: Chapman &
Hall/CRC.

Yamaguchi, K. 2002. Regression models with parametrically weighted explanatory vari-
ables. Sociological Methodology 32: 219–245.

About the author

Maarten L. Buis is affiliated with the Department of Sociology of the University Tübingen,
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